Remarks on the Gauss-Lucas theorem in higher dimensional space
Author:
A. W. Goodman
Journal:
Proc. Amer. Math. Soc. 55 (1976), 97-102
MSC:
Primary 30A08; Secondary 26A78
DOI:
https://doi.org/10.1090/S0002-9939-1976-0435366-6
MathSciNet review:
0435366
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A recent paper by J. B. Diaz and Dorothy Browne Shaffer extends the Gauss-Lucas Theorem to -dimensional Euclidean space. The authors leave open certain natural questions concerning the existence of ``zeros of the derivative". This paper answers three such questions, and suggests several other questions for further investigation.
- [1] J. B. Diaz and Dorothy Browne Shaffer, A generalization to higher dimensions of a theorem of Lucas concerning the zeros of the derivative of a polynomial of one complex variable, Proc. Internat. Congress Math. (Vancouver, 1974), Canad. Math. Congress (to appear). MR 0435365 (55:8325)
- [2] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR22 #8302. MR 0117523 (22:8302)
- [3] Morris Marden, Geometry of polynomials, Math. Surveys, no. 3, Amer. Math. Soc., Providence, R.I., 1966. MR27 #1562. MR 0225972 (37:1562)
- [4] G.V. Sz.-Nagy, Über die Lage der Nullstellen eines Abstandspolynoms and seiner Derivierten, Bull. Amer. Math. Soc. 55(1949), 329-342. MR10, 702. MR 0030036 (10:702g)
- [5] A. Schurrer, On the location of the zeros of the derivative of rational functions of distance polynomials, Trans. Amer. Math. Soc. 89(1958), 100-112. MR20 #4634. MR 0098172 (20:4634)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A08, 26A78
Retrieve articles in all journals with MSC: 30A08, 26A78
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1976-0435366-6
Keywords:
Polynomials,
zeros of the derivative,
Euclidean -space,
gradient,
Gauss-Lucas Theorem
Article copyright:
© Copyright 1976
American Mathematical Society