Bounds on Positive Integral Solutions of Linear Diophantine Equations

I. Borosh and L. B. Treybig

Abstract. Assuming the existence of a solution, we find bounds for small solutions \(x \) of the finite matrix equation \(Ax = B \), where each entry of \(A, B \) is an integer, and \(x \) is a nontrivial column vector with nonnegative integer entries.

0. Introduction. In [1], [5] and [6] there arise in a topological setting, systems of linear equations with integer coefficients. The problem is to find a bound \(K \) depending on the coefficients only, such that if the given system has a nontrivial solution in nonnegative integers, then it has such a solution with all entries bounded by \(K \). In [6] L. B. Treybig gives such a bound \(K \) using an inductive definition, and proves that a new solution can be found bounded by \(K \) and with the additional property that each entry is bounded by the corresponding entry of the given solution. The purpose of this paper is to find some easily stated bounds which are much smaller than those given by Treybig [6] but which do not satisfy necessarily the additional property.

Notation. Throughout this paper \(A \) will denote an \(m \times n \) matrix, \(B \) an \(m \times 1 \) matrix, both with integral entries. We will consider the system of equations

\[
Ax = B
\]

where \(x \) is a column whose entries are \(x_1, \ldots, x_n \). By \((A|B) \) we denote the augmented matrix of the system (1). Let \(r \) denote the rank of \(A \), \(M_1 \) the maximum of the absolute values of all the minors of \(A \) of order \(r \), \(M_2 \) the maximum of the absolute values of all minors of order \(r \) of \((A|B) \), and \(M \) the maximum of the absolute values of all the minors of \((A|B) \). All our bounds will be stated in terms of \(m, n, M_1, M_2, M \), and therefore we may assume from now on without loss of generality that \(r = m \leq n \). \([x]\) will denote, as usual, the largest integer not exceeding \(x \).

Results. §1 is devoted to the case \(m = 1 \). We prove that the bound in this case is the maximum of the absolute value of the coefficients. It is easy to see that this bound is sharp.

§2 considers the case \(r = n - 1 \) and we find the bound \(M_2(1 + 1/M_1) \). The homogeneous case, \(B = 0 \), is discussed in §3 and the bound \(M \) is obtained.

Received by the editors June 21, 1974, and, in revised form, March 10, 1975.

AMS (MOS) subject classifications (1970). Primary 15A06; Secondary 10B05.

Key words and phrases. Linear equations, integer entries, nonnegative integral solution, bounds, polyhedral convex cones, minors, adjoint matrix.
§4 deals with the general case. First, we prove that if the homogeneous system $Ax = 0$ has no nontrivial solution in nonnegative integers x_i, then every nonnegative solution of (1) in integers satisfies $\max x_i < M_2$. We then find a bound of the order of M^2 valid in all cases.

The result leads us to conjecture that if (1) has a solution in nonnegative integers, then it has such a solution bounded by M_2. However, we could not prove this conjecture except for the particular cases already mentioned, nor could we provide an example to disprove it.

1. The case $m = 1$.

Theorem 1. Let a_1, \ldots, a_n be integers not all 0, and b an integer. Suppose the equation

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$

has a nontrivial solution in nonnegative integers x_1, \ldots, x_n. Then (2) has such a solution y_1, \ldots, y_n and, in addition,

$$y_i < \max(|a_1|, \ldots, |a_n|, |b|), \quad i = 1, \ldots, n.$$

Proof. We may assume without loss of generality that not all the a_i have the same sign, otherwise it is clear that any solution of (2) also satisfies (3). Assume without loss of generality $a_1 > 0, a_2 < 0,$ and $b > 0$. If $b = 0$, we have the obvious solution $x_1 = -a_2, x_2 = a_1, x_3 = \cdots = x_n = 0$. We may assume, therefore, $b > 0$.

The proof proceeds by induction on n, and the inductive step is adapted from the method described in [4] for the solution of linear diophantine equations. The case $n = 1$ is obvious, but we will also need the case $n = 2$. Consider the equation

$$a_1x_1 + a_2x_2 = b.$$

Let x_1, x_2 be a nonnegative solution of (4) and let $k = \lfloor x_2/a_1 \rfloor$. Since $a_1x_1 + a_2x_2 = b > 0$, we have $-x_1/a_2 - x_2/a_1 > 0$ therefore, $k = \lfloor x_2/a_1 \rfloor < \lfloor x_1/-a_2 \rfloor$.

Define $y_1 = x_1 + ka_2, y_2 = x_2 - ka_1$. Then (y_1, y_2) is a nonnegative solution of (4). We see that y_2 is the remainder of the division of x_2 by a_1, and therefore $y_2 < a_1$.

$$y_1 = x_1 + ka_2 = x_1 + \frac{x_2 - y_2}{a_1} a_2 = \frac{b - a_2y_2}{a_1} \leq \frac{\max(|b|, |a_2|)(1 + y_2)}{a_1}.$$

Since $1 + y_2 < a_1$ and $a_1 > 1$, we get $y_1 < \max(|b|, |a_2|)$.

Assume now that Theorem 1 holds for equations with less than n unknowns. As above, in equation (2), we assume that $a_1 > 0, a_2 < 0$. Let $g = \gcd(a_1, a_2)$ and x_1, \ldots, x_n be a nonnegative solution of (2) where no $x_i = 0$. Let $u = |a_1x_1 + a_2x_2|/g$. Then u, x_3, \ldots, x_n is a nonnegative solution of

$$\varepsilon u + a_3x_3 + \cdots + a_nx_n = b,$$

where $\varepsilon = +1$ or $\varepsilon = -1$, according as $a_1x_1 + a_2x_2$ is positive or not. By the induction hypothesis, (5) has, therefore, an integral nonnegative solution u', y_3, \ldots, y_n such that

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
max(\(u', y_3, \ldots, y_n\)) \leq \max(g, |a_3|, \ldots, |a_n|, |b|)) \leq \max(|a_1|, \ldots, |a_n|, |b|).

The equation

\[(a_1/g)x_1 + (a_2/g)x_2 = eu'\]

has an integral solution since \(\gcd(a_1/g, a_2/g) = 1\), and since \(a_1a_2 < 0\), the homogeneous equation \((a_1/g)x_1 + (a_2/g)x_2 = 0\) has a positive integral solution. Therefore (6) has an integral positive solution and, by the case previously considered, it has a solution \(y_1, y_2\) such that \(y_1 > 0, y_2 > 0\), and

\[\max(y_1, y_2) < \max(|a_1|/g, |a_2|/g, u') < \max(|a_1|, \ldots, |a_n|, |b|).\]

2. The case \(r = n - 1\).

Theorem 2. If \(r = n - 1\) and the system (1) has a nontrivial solution in nonnegative integers \(x_i\), then the system (1) has such a solution \((y_1, \ldots, y_n)\) satisfying the additional condition

\[\max y_i \leq M_2(1 + 1/M_1) \leq 2M_2.\]

Proof. Let \(A'\) be an \(m \times m\) submatrix of \(A\) whose minor has the maximal absolute value. Since we assume \(r = m\), we have \(a = \det A' \neq 0\), and we may assume without loss of generality that \(a > 0\), so that \(a = M_1\). We may also rename the variables in such a way that \(A'\) sits in the left corner of \(A\). Multiplying the two sides of (1) by \(\text{adj} A'\) we get

\[(7) \quad a \begin{bmatrix} x_1 \\ \vdots \\ x_m \\ x_{m+1} \end{bmatrix} + \begin{bmatrix} b_1 \\ \vdots \\ b_m \\ b_{m+1} \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix},\]

where the \(b_i\) are minors of \(A\), and the \(c_i\) are minors of \((A|B)\) for \(i = 1, \ldots, m\). Denote by \(x_1, \ldots, x_m, x_{m+1}\) a positive solution of (7) and define

\[(8) \quad k = \min\{\lceil x_{m+1}/a \rceil, \lfloor x_i/|b_i| \rfloor\};\]

the minimum is taken over all \(i = 1, \ldots, m\) such that \(b_i < 0\).

We may assume that not all \(c_i\) are 0, since otherwise the existence of a positive solution implies \(b_i < 0\) for \(i = 1, \ldots, m\), and we get the solution \(x_{m+1} = a, x_i = -b_i, i = 1, \ldots, m\). Define \(y_{m+1} = x_{m+1} - ak, y_i = x_i + b_i k, i = 1, \ldots, m\). It is clear that \(y_1, \ldots, y_{m+1}\) is a nonnegative solution of (7). It remains to estimate \(y_1, \ldots, y_{m+1}\).

If \(k = \lceil x_{m+1}/a \rceil\), then \(y_{m+1}\) is the remainder of the division of \(x_{m+1}\) by \(a\) and, therefore, \(y_{m+1} < a \leq M_2\).

If \(k = \lfloor x_j/|b_j| \rfloor\), \(1 \leq j \leq m, b_j < 0\), then

\[y_{m+1} = x_{m+1} - a\lfloor x_j/|b_j| \rfloor = x_{m+1} - a(x_j - y_j)/|b_j|\]

and \(y_j < |b_j|\); therefore

\[y_{m+1} = (-x_{m+1}b_j - ax_j + ay_j)/|b_j| = (-c_j + ay_j)/|b_j|;\]

\[y_{m+1} \leq \max(|c_j|, a)(1 + y_j)/|b_j| \leq \max(|c_j|, a) < M_2.\]

Let \(i\) be such that \(1 \leq i \leq m\). If \(b_i > 0\), then \(c_i > 0\) and \(ay_i < c_i, y_i < c_i < M_2\). If \(b_i < 0\) and \(k = \lfloor x_i/|b_i| \rfloor\), then \(y_i\) is the remainder of the division of \(x_i\)
302 I. BOROSH AND L. B. TREYBIG

by $|b_i|$ and, therefore, $y_i < b_i < M_2$. If $b_i < 0$, and

$$k = \left\lfloor \frac{x_{m+1}}{a} \right\rfloor = \frac{(x_{m+1} - y_{m+1})}{a},$$

then

$$y_i = x_i + b_i k = \frac{(c_i - b_i y_{m+1})}{a} < \sup(|b_i|, |c_i|) < M_2.$$

If $b_i < 0$ and $A = \max(1, |c_i|)(1 + y_j)/a < |b_i|$, then $b_j < 0, y_j < |b_j|$, and

$$ay_i = ax_j - \frac{ab_j(x_j - y_j)}{b_j} = \frac{b_j(c_i - b_i x_{m+1}) - b_j(c_j - b_j x_{m+1}) + ab_j y_j}{b_j},$$

$$y_i = \frac{b_j c_i - b_j c_j + ab_j y_j}{ab_j} \leq \frac{|b_j| \max(a, |c_j|)(1 + y_j) + |b_j| c_j}{a |b_j|} \leq \max(a, |c_j|) + |c_i|/a < M_2(1 + 1/M_1).$$

3. The homogeneous case.

Lemma 1. If $Ax = 0$ has a nontrivial nonnegative solution and $n - r > 2$, then there exists a submatrix A' of A of order $m(n - 1)$, such that $A'x = 0$ has a nontrivial nonnegative solution.

Proof. Let x be a nontrivial nonnegative solution of $Ax = 0$. If $x_i = 0$ for some i, then A' is obtained by deleting the column i from A. Assume therefore that $x_i > 0$, $i = 1, \ldots, n$. Since $n > r + 2$, there exists a solution y of $Ax = 0$ such that $x_i y$ are linearly independent. Let

$$\lambda = \max_{i=1, \ldots, n} \left(-\frac{y_i}{x_i}\right) = -y_i/x_i;$$

then for each i,

$$\lambda x_i + y_i \geq -(y_i/x_i)x_i + y_i \geq 0 \quad \text{and} \quad \lambda x_i + y_i = 0.$$

A' is obtained by deleting column i from A.

Theorem 3. If $Ax = 0$ has a nontrivial nonnegative solution x in integers x_i, then it has such a solution y, with $y_j \leq M$.

Proof. By using Lemma 1 we see that we can choose one of the variables to be 0 and get a smaller system $A'x = 0$ which satisfies the hypothesis. Using Lemma 1 repeatedly we find an $m \times n'$ matrix A' of rank r' such that $n' = r' + 1$ and which by Cramer's rule has a positive integral solution given by minors of A'.

4. The general case.

Theorem 4. If $Ax = 0$ has no nontrivial nonnegative solution, then every nonnegative integral solution y of (1) satisfies $y_i \leq M_2$ for $i = 1, \ldots, n$.

Proof. Applying Gordan's theorem [3, p. 31] to A we know that there exists a vector $z = (z_1, \ldots, z_m)$ such that all the n entries of zA are positive. Let C denote the set of all z such that all the entries of zA are nonnegative. C is a polyhedral convex cone [2] in the m-dimensional euclidian space, and each edge u of C satisfies $A' u \geq 0$.
for some $m \times (m - 1)$ submatrix A' of A of rank $(m - 1)$, where T denotes
the transpose. (8) has a nontrivial integral solution whose entries are the
minors of order $m - 1$ of A'. C is m-dimensional and therefore its edges are
not all contained in any hyperplane; therefore, for any $i, 1 \leq i \leq m$, there
exists an edge $u = (u_1, \ldots, u_m)$ whose entries are minors of order $m - 1$
of some submatrix A' or A of order $m \times m - 1$ and such that
\begin{equation}
(9) \quad a_{i1}u_1 + \cdots + a_{im}u_m \neq 0.
\end{equation}
Let x be any nonnegative integral solution of (1); then $uAx = ub$. Let
$uA = (A_1, \ldots, A_n)$; then $A_j \geq 0$ for $u = 1, \ldots, m$ since u is an edge of C,
and $A_j > 0$, by (9). A_1, \ldots, A_n and ub are minors of $(A|B)$ by the Laplace
expansion theorem. They are therefore integers, and
\begin{equation}
A_i x_i \leq M_2, \quad x_i \leq M_2.
\end{equation}

Theorem 5. If (1) has a nontrivial nonnegative integral solution x
$= (x_1, \ldots, x_n)$, and $\sum_{i=1}^n x_i$ is minimal over all such solutions, then
(i) $x_i \leq M$ for at least some i,
(ii) $x_j \leq Mm(1 + (n - 1)M)$ for $1 \leq j \leq n$,
(iii) if $Q \geq 1$ and w is the number of x_i such that $x_i > QM$, then $w \leq
m(1 + nM)/(Q + mM)$.

Proof. We may assume $n > m = \text{rank } A$, since otherwise M is trivially a
bound. Let x be the minimal solution described in the statement of the
theorem and assume that not all the x_i are bounded by M. Rename the
variables in such a way that x_1, \ldots, x_v are all the x_i which are bigger than M,
hence $v > 1$.

Case I. There is a $v \times v$ submatrix of $X = (a_{ij})$ ($1 \leq i \leq m, 1 \leq j \leq v$)
which is nonsingular. Let D be the nonzero determinant of this matrix. Then
\begin{equation}
x_p = (a_{p,v+1}x_{v+1} + \cdots + a_{pn}x_n + b_p)/D
\end{equation}
for $1 \leq p \leq v$, where $\pm a_{p,1}, \pm b_p, D$ are minors of $(A|B)$. Thus
\begin{equation}
x_p \leq (n - v)M^2 + M \leq (n - 1)M^2 + M
\end{equation}
for $1 \leq p \leq v$ and $x_p \leq M$ for $v + 1 \leq p \leq n$.

Case II. There is no $v \times v$ submatrix of X which is nonsingular. We may
assume without loss of generality that the first q rows of X form a basis for
the row space of X, and we may assume further that the matrix $Y = (a_{ij})$
($1 \leq i, j \leq q$) is nonsingular. Let $D = \text{det } Y \neq 0$. Solving for x_1, \ldots, x_q we
get
\begin{equation}
x_i = (a'_{i,q+1}x_{q+1} + \cdots + a'_{ic}x_c + \cdots + a'_n x_n + b_i)/D
\end{equation}
where $\pm a'_{ij}, \pm b_i, D$ are minors of $(A|B)$ and $1 \leq i \leq q$. Now consider some
fixed p where $q + 1 \leq p \leq v$. Recall that $x_p > M$ and $x_i \leq M$ for $v + 1 < i
\leq n$. If $\sum_{i=1}^q a'_{ip} > -D$, consider the solution y of (1) defined by
\begin{equation}
y_j = \begin{cases}
x_j & \text{if } q + 1 \leq j \leq n \text{ and } j \neq p, \\
x_p - D & \text{if } j = p,
\end{cases}
\end{equation}
where
\begin{equation}
x_i = a'_{ip}, \text{ if } 1 \leq i \leq q.
\end{equation}
Then $\sum_{j=1}^{n} x_j = \sum_{j=1}^{n} x_j - D - \sum q a_j < \sum_{j=1}^{n} x_j$, a contradiction. If $\sum_{j=1}^{q} a_j < -D$, consider the solution y of (1) defined by

$$y_j = \begin{cases} x_j & \text{for } q + 1 \leq j \leq n, \ j \neq p, \\ x_p + D & \text{for } j = p, \\ x_j + a_j' & \text{for } 1 \leq j \leq q. \end{cases}$$

As above, we get $\sum_{j=1}^{n} y_j < \sum_{j=1}^{n} x_j$, a contradiction. Therefore $\sum_{j=1}^{q} a_j = -D$ for $q < p < n$. We add now all the x_i, $1 \leq i \leq q$, defined by (10) to obtain:

$$\sum_{i=1}^{q} x_i = \left\{ -D \sum_{i=q+1}^{v} x_i + \sum_{i=q+1}^{n} \left(\sum_{j=1}^{q} a_j \right) x_i + \sum_{i=1}^{q} b_i \right\} / D,$$

$$\sum_{i=1}^{v} x_i \leq \sum_{i=q+1}^{n} \sum_{j=1}^{q} a_j x_i + \sum_{i=1}^{q} |b_i|,$n

$$\sum_{i=1}^{v} x_i \leq q(n-v)M^2 + qM.$$n

Thus $x_i \leq m(n-1)M^2 + mM$ for $1 \leq i \leq v$, and $x_i \leq M$ for $v+1 < i < n$. If $v = n$, then (13) implies that $nM < mM$, so some $x_i < M$. Note also that (12) holds also for Case I. If $Q > 1$ and w denotes the number of $x_i > QM$, then by (13):

$$wQM \leq q(n-v)M^2 + qM, \quad wQM \leq m(n-w)M^2 + qM,$$

or

$$w \leq m(1+nM)/(Q+mM).$$

REFERENCES

DEPARTMENT OF MATHEMATICS, TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS 77843