Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside $ [-1,+1]$


Author: A. K. Varma
Journal: Proc. Amer. Math. Soc. 55 (1976), 305-309
MathSciNet review: 0396878
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: Let $ {P_n}(x)$ be an algebraic polynomial of degree $ \leqslant n$ having all its zeros inside $ [ - 1, + 1]$; then we have

$\displaystyle \int_{ - 1}^1 {P_n^{'2}(x)dx > (n/2)\int_{ - 1}^1 {P_n^2(x)dx.} } $

The result is essentially best possible. Other related results are also proved.

References [Enhancements On Off] (What's this?)

  • [1] S. N. Bernstein, Sur l'order de la meilleure approximation des fonctions continues par des polynômes de dégré donné, Mém. Acad. Belgique, 1912.
  • [2] János Eröd, Bizonyos polinomok maximumának, Mat. Fiz. Lapok. 46(1939), 58-82 [see Zentralblatt 21(1940), p. 395].
  • [3] Einar Hille, G. Szegö, and J. D. Tamarkin, On some generalizations of a theorem of A. Markoff, Duke Math. J. 3 (1937), no. 4, 729–739. MR 1546027, http://dx.doi.org/10.1215/S0012-7094-37-00361-2
  • [4] A. A. Markov, On a problem of D. I. Mendeleer, Zap. Imp. Akad. Nauk 62(1889), 1-29. (Russian).
  • [5] Erhard Schmidt, Über die nebst ihren Ableitungen orthogonalen Polynomensysteme und das zugehörige Extremum, Math. Ann. 119 (1944), 165–204 (German). MR 0011754 (6,212c)
  • [6] P. Turan, Über die Ableitung von Polynomen, Compositio Math. 7 (1939), 89–95 (German). MR 0000228 (1,37b)


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1976-0396878-7
PII: S 0002-9939(1976)0396878-7
Article copyright: © Copyright 1976 American Mathematical Society