Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Homotopy trees with trivial classifying ring


Author: Micheal N. Dyer
Journal: Proc. Amer. Math. Soc. 55 (1976), 405-408
DOI: https://doi.org/10.1090/S0002-9939-1976-0397722-4
MathSciNet review: 0397722
Full-text PDF

Abstract | References | Additional Information

Abstract: In this note we study a certain class of groups $ \pi $ for which the homotopy classification of $ (\pi ,m)$-complexes is independent of the $ k$-invariant for small $ m$.


References [Enhancements On Off] (What's this?)

  • [1] R. Bieri, Gruppen mit Poincaré-Dualität, Comment. Math. Helv. 47 (1972), 373-396. MR 0352290 (50:4777)
  • [2] R. Bieri and B. Eckmann, Groups with homological duality generalizing Poincaré duality, Invent. Math. 20 (1973), 103-124. MR 49 #5204. MR 0340449 (49:5204)
  • [3] M. Dyer, Homotopy classification of $ (\pi ,m)$-complexes. I, II, III (to appear J. Pure and Applied Algebra).
  • [4] -, Projective $ k$-invariants (to appear).
  • [5] K. Gruenberg, Cohomological topics in group theory, Lecture Notes in Math., vol. 143, Springer-Verlag, New York, 1970. MR 43 #4923. MR 0279200 (43:4923)
  • [6] F. E. A. Johnson and C. T. C. Wall, On groups satisfying Poincaré duality, Ann. of Math. (2) 96 (1972), 592-598. MR 47 #358. MR 0311796 (47:358)
  • [7] S. Mac Lane and J. H. C. Whithead, On the $ 3$-type of a complex, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 41-48. MR 11, 450.


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0397722-4
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society