IRREDUCIBLES IN THE LANDWEBER NOVIKOV ALGEBRA

ILAN KOZMA

ABSTRACT. All the irreducible and reducible elements in the Landweber Novikov algebra are determined. A full set of relations mod reducibles is given.

1. Introduction. Let S^* denote the Landweber Novikov algebra, and let \bar{S} be the kernel of the augmentation map. The aim of this paper is to compute $Q(S^*) = \bar{S}/\bar{S}^2$, the module of irreducibles.

For every exponent sequence α with only finitely many nonzero terms, Landweber [1] and Novikov [2] define an operation $s_\alpha \in S^*$. Moreover, the s_α's form a basis for S^* as a \mathbb{Z}-module.

For every exponent sequence $\alpha = (\alpha_1, \ldots, \alpha_n, \ldots)$, let $||\alpha|| = \sum i\alpha_i$, and $|\alpha| = \sum \alpha_i$. Let $\Delta(\alpha)$ denote the exponent sequence all of whose elements are zero except 1 in the αth place. Our main theorem is

Theorem 1.1.

(a) $Q(S^*)$ is generated by \{ $s_p^{s^*\Delta(1)}, s_p^{s^*\Delta(2)}$ | p prime, $n > 0$ \}, with the only relations $p^{s_p^{s^*\Delta(1)}} \in \bar{S}^2$ for $n > 2$ and every p, $p^{s_p^{s^*\Delta(1)}} \in \bar{S}^2$ for $p \neq 2$, $p^{s_p^{s^*\Delta(2)}} \in \bar{S}^2$ for $n > 1$ and $2(s^{s^*\Delta(2)} + s_2^{s^*\Delta(1)}) \in \bar{S}^2$.

(b) All the s_α's are reducible except for $\alpha = p^n\Delta(1), p^n\Delta(2), 2p^n\Delta(1)$. The only relations between irreducibles are those specified in (a) and $s^{s^*\Delta(1)} + s_2^{s^*\Delta(1)} \in \bar{S}^2$ for $p \neq 2$ and $n > 0$.

Our main computational tool is the following theorem due to Landweber [1].

Let S_*^* be the dual algebra to S^*. Let s_α be the dual basis to s_α. Then S_*^* is a polynomial algebra with generators \{ $s_{\Delta(\alpha)}(a)$ | $a \geq 1$ \} and

Theorem 1.2. The diagonal in S_*^* is given by

$$\phi_\alpha(s_{\Delta(\alpha)}) = \sum_{||\alpha||+i = a} \binom{i+1}{\alpha} s_{\alpha} \otimes s_{\Delta(i)}.$$

ADDED IN PROOF. While writing this paper I heard that Aikawa [3] got the same results. I would like to thank Shibata for reading this paper and correcting many of the mistakes appearing in the original version.

2. Definition. If $\alpha = (\alpha_1, \ldots, \alpha_n, \ldots)$, let $v_p(\alpha) = \min_i \{ v_p(\alpha_i) \}$ and $v_p(\alpha) = \max \{ 0, v_p(\alpha) - v_p(n) \}$.

Received by the editors March 12, 1974 and, in revised form, October 9, 1974.

© American Mathematical Society 1976
Let us say that two exponent sequences \(\alpha = (a_1, \ldots, a_n, \ldots) \), \(\beta = (b_1, \ldots, b_n, \ldots) \) are disjoint if \(a_i b_i = 0 \) for every \(i \).

Theorem 2.1. (a) For every \(\alpha, \beta \) we have \(s_\alpha \circ s_\beta = \lambda s_{\alpha + \beta} + \sum \lambda_i s_\alpha \) where \(|\alpha_i| < |\alpha + \beta| \). If \(\alpha \) and \(\beta \) are disjoint, then \(\lambda = 1 \). Moreover, \(v_p(\lambda_i s_\alpha) \leq \min\{v_p(\alpha), v_p(\beta)\} \).

(b) For \(n > 1 \) there exists a \(\lambda \in \mathbb{Z} \) such that \(\lambda s_{n\Delta(a)} \equiv \sum \lambda_i s_\alpha \mod S^2 \), where \(|\alpha| < n \) and \(v_q(\lambda_i s_\alpha) \leq v_q(n) \) for every prime \(q \). Moreover, \(\lambda = 1 \) if \(n \) is not a power of a prime, and \(\lambda = p \) if \(n = p^k \) for some prime \(p \).

Proof of (a). We will prove (a) by passing to the dual. That is, if \(\phi_*(\gamma) = \lambda \sigma_\alpha \otimes \sigma_\beta + \cdots \) with \(\lambda \neq 0 \), then \(|\gamma| < |\alpha + \beta| \) unless \(\gamma = \alpha + \beta \). This will follow from 1.2 by trivial induction on \(|\gamma| \). We also have to show that \(\min\{v_p(\alpha), v_p(\beta)\} \geq v_p(\gamma) - v_p(\beta) \). Let \(r = v_p(\gamma) \), i.e. \(\gamma = p^r \beta \). Hence,

\[
\phi_*(\gamma) = \phi_*(\sigma_\beta)^{p^r} = \left(\sum \mu_i \sigma_\alpha \otimes \sigma_\beta \right)^{p^r},
\]

and we will get the results from the following lemma.

Lemma 2.2. If \(\sum \gamma_i z_i = \sum \lambda_i z_i \), where the \(z_i \)'s are monomials in the \(y_i \)'s, then \(v_p(z_i) + v_p(y_i) \geq r \), where \(v_p(z) = \max\{r \mid \exists y \text{ with } z = y^{p^r}\} \).

Proof of 2.1 (b). From (a) we have that if \(k + l = n \), then

\[
s_{k\Delta(a)} \circ s_{l\Delta(a)} = \binom{n}{k} s_{n\Delta(a)} + \sum \lambda_i s_\alpha,
\]

where \(|\alpha| < n \) and \(v_p(\lambda_i s_\alpha) \leq v_p(n) \) for every prime \(p \). But g.c.d. \(\left(\binom{n}{k} \right) \) is the same \(\lambda \) defined in the theorem, and, hence, we can take an appropriate linear combination of the above relations to get (b).

Corollary 2.3. For every \(n \) and \(\alpha \) we have that

\[
n_s = \sum_{p, \alpha, i} \lambda_{p, \alpha, i} s_{p\Delta(a)} \mod S^2
\]

where \(i \leq v_p(n_s) \).

Proof. The proof is by induction on \(|\alpha| \). If \(\alpha \) is not of the form \(m\Delta(a) \), then there are disjoint \(\beta, \gamma \) such that \(\alpha = \beta + \gamma \). Then by 2.1(a), \(n_{s_\alpha} \equiv \sum N_{\lambda_i s_\alpha} \) with \(v_p(n_{\lambda_i s_\alpha}) \leq v_p(n_{s_\alpha}) \) and \(|\alpha| < |\alpha| \). Apply now the induction hypothesis to \(\alpha_i \) and \(n_{\lambda_i} \).

If \(\alpha = m\Delta(a) \), do the same using 2.1(b).

Lemma 2.4. For every \(a \neq b \),

(a) \(s_{\Delta(a)} \circ s_{\Delta(b)} = s_{\Delta(a) + \Delta(b)} + (b + 1)s_{\Delta(a + b)} \).

(b) \(s_{2\Delta(a)} \circ s_{2\Delta(b)} = \lambda s_{\Delta(a) + 2\Delta(b)} + (b + 1)s_{\Delta(a) + \Delta(a + b)} \).

(c) \(s_{2\Delta(b)} \circ s_{\Delta(a)} = \lambda s_{\Delta(a) + 2\Delta(b)} + (a + 1)s_{\Delta(b) + \Delta(a + b)} + \left(\frac{a + 1}{2} \right) s_{\Delta(a + 2b)} \).

\(\lambda \) is the same as in (b) and \(\lambda = 1 \) if \(a \neq b \).

(d) \(s_{2\Delta(a)} \equiv 0 \mod S^2 \) for every \(a \neq 1, 2 \).

Proof. (a), (b), (c) are routine computations. To prove (d) we will have to separate cases.
(1) \(a \) odd, \(a \neq 1 \). Write \(a = b + c \) with \(b - c = 1 \). Then by (a), \([s_{\Delta(b)}, s_{\Delta(c)}] = (b - c)s_{\Delta(a)} = s_{\Delta(a)} \).

(2) \(a \) even, \(a \neq 2 \). Write \(a = b + c \) with \(b - c = 2 \). Then as in (1) we get \(2s_{\Delta(a)} \equiv 0 \mod S^2 \).

Let \(a = 2 + 2b \). Using (b), (c) and (a) we get that
\[
[s_{\Delta(2)}, s_{2\Delta(b)}] = (b - 2)s_{\Delta(b) + \Delta(b + 2)} + 3s_{\Delta(a)}
\]
and
\[
s_{\Delta(b + 2)} \circ s_{\Delta(b)} = s_{\Delta(b) + \Delta(b + 2)} + (b + 1)s_{\Delta(a)}.
\]
Combining both we get
\[
s_{\Delta(a)} \equiv [(b + 1)(b - 2) - 2]s_{\Delta(a)} \mod S^2.
\]
But \((b + 1) \cdot (b - 2)\) is even and, hence, \(s_{\Delta(a)} \in S^2 \).

Lemma 2.5.

\[
s_{p^*\Delta(a)} \circ s_{p^*\Delta(b)} = (b + 1)P^*s_{p^*\Delta(a) + \Delta(b)} + s_{p^*\Delta(a) + \Delta(b)}
\]
\[\quad + \sum_{c; k < n} \lambda_{c,k}s_{p^*\Delta(c)} \mod S^2 \text{ for } a \neq b.
\]
\[
s_{p^*\Delta(a)} \circ s_{2p^*\Delta(b)} = \lambda^2 s_{p^*\Delta(a) + 2\Delta(b)} + (b + 1)P^*s_{p^*\Delta(a) + \Delta(b + a + b)}
\]
\[\quad + \sum_{c; k < n} \lambda_{c,k}s_{p^*\Delta(c)} \mod S^2.
\]
\[
s_{2p^*\Delta(b)} \circ s_{p^*\Delta(a)} = \lambda^2 s_{p^*\Delta(a) + 2\Delta(b)} + (a + 1)P^*s_{p^*\Delta(a) + \Delta(b + a) + b)}
\]
\[\quad + \left(\frac{a + 1}{2}\right)P^*s_{p^*\Delta(a + 2b)} + \sum_{c; k < n} \lambda_{c,k}s_{p^*\Delta(c)} \mod S^2.
\]

The constant \(\lambda \) appearing in (b) and (c) is the same \(\lambda \) as in 2.4.

(d) For every \(a \neq 1, 2 \) we have \(s_{p^*\Delta(a)} \in S^2 \).

Proof. The proof of (a), (b) and (c) are identical, so we will prove (b). By 2.1 we have that
\[
s_{p^*\Delta(a)} \circ s_{2p^*\Delta(b)} = \lambda^2 s_{p^*\Delta(a) + 2\Delta(b)} + \sum \lambda_i s_{\alpha_i}
\]
with \(|\alpha_i| < 3p^n \), and that for every prime \(q \neq p \), \(\nu_q(\lambda_i s_{\alpha_i}) = 0 \). We want to show that the only possible \(\alpha_i \) in the sum with \(\nu_p(\alpha_i) \geq n \) is \(p^n(\Delta(b) + \Delta(a + b)) \). This will imply (b) by Corollary 2.3.

But if \(\alpha_i = p^n\beta \) and \(|\alpha_i| < 2p^n \), then \(\beta \) must be of the form \(\Delta(t) + \Delta(s) \) or \(2\Delta(t) \). An immediate check leaves the only possibility \(\beta = \Delta(a) + \Delta(a + b) \).

(d) The proof is by induction on \(n \), the case \(n = 0 \) having been done in 2.4(d). For \(n > 0 \) one follows the proof of 2.4(d). The only extra fact which is needed is that \(ps_{p^*\Delta(a)} \in S^2 \) for \(a > 2 \), but this will follow from \(ps_{p^*\Delta(a)} \equiv \sum_{t < n; \beta} \lambda_{t; b} s_{p^*\Delta(b)} \) and our induction hypothesis. (Note that in the above sum we have \(b > 2 \), so induction applies.)

Proof of Theorem 1.1. Let \(||\alpha|| = n \) with \(n \) not of the form \(p^m \) or \(2p^m \).

Then \(s_{\alpha} \equiv \sum_{t; \beta, i} \lambda_{i; \beta} s_{p^*\Delta(a)} \mod S^2 \) where \(a \neq 1, 2 \). Then by 2.5(d), \(s_{\alpha} \) is reducible.
If \(\|\alpha\| = p^n \text{ or } 2p^n \), but \(\alpha \neq p^n\Delta(1), p^n\Delta(2) \text{ or } 2p^n\Delta(1) \), then \(\nu_p(\alpha) < n \) and
\[s_a = \sum_i \lambda_i a^{s_p(\Delta(a))} \text{ with } a \neq 1, 2 \text{ and, as before, } s_a \text{ is reducible.} \]

As for the remaining cases, we have already shown in the proof of 2.5(d) that \(p^s_{p^*\Delta(a)} \in \tilde{S}^2 \) for \(a > 2 \). The same proof works if \(a = 1 \) and \(p > 2 \). To show that these are the only relations, look at:

\[\phi_s(\sigma_{p^*\Delta(1)}) = (\sigma_{\Delta(1)} \otimes 1 + 1 \otimes \sigma_{\Delta(1)})^p. \]

So in any relation where \(s_{p^*\Delta(1)} \) appears, it is with coefficient divisible by \(p \). Hence, it is irreducible.

\[\phi_s(\sigma_{p^*\Delta(2)}) = (\sigma_2 \otimes 1 + 2\sigma_1 \otimes \sigma_1 + 1 \otimes \sigma_2)^p. \]

Hence, the only relation in which \(s_{p^*\Delta(2)} \) appears with a coefficient which is not divisible by \(p \) is

\[s_{p^*\Delta(1)} \circ s_{p^*\Delta(1)} = 2p^n s_{p^*\Delta(2)} + \left(\frac{2p^n}{p^n} \right) s_{2p^*\Delta(1)} + \cdots. \]

Similarly, the previous relation is the only interesting one for \(s_{2p^*\Delta(1)} \). The other terms in this expression are all in \(\tilde{S}^2 \).

If \(p > 2 \) we have

\[\left(\frac{2p^n}{p^n} \right) \equiv 2p^n \equiv 2 \mod p. \]

Hence, \(2(s_{2p^*\Delta(1)} + s_{2p^*\Delta(2)}) \in \tilde{S}^2 \). We also have \(p(s_{2p^*\Delta(1)} + s_{p^*\Delta(2)}) \in \tilde{S}^2 \) and we get our theorem for \(p \neq 2 \). If \(p = 2 \) we have

\[\left(\frac{2p^n}{p^n} \right) \equiv 2 \mod 4. \]

Hence, \(2s_{2^{n+1}\Delta(1)} \in \tilde{S}^2 \) for every \(n > 1 \), which finishes our proof.

References

Department of Theoretical Mathematics, Weizmann Institute of Science, Rehovot, Israel.