EMBEDDINGS OF COMPACTA WITH SHAPE DIMENSION IN THE TRIVIAL RANGE

GERARD A. VENEMA

Abstract. In this paper a loop condition is defined which generalizes the cellularity criterion and applies to compacta with nontrivial shape. It is shown that if \(X, Y \subseteq E^n, n > 5 \), are compacta which satisfy this loop condition and whose shape classes include a space having dimension in the trivial range with respect to \(n \), then \(\text{Sh}(X) = \text{Sh}(Y) \) is equivalent to \(E^n - X \cong E^n - Y \). An application is given to compacta with the shape of a compact connected abelian topological group.

1. Introduction and statements of main results. Recently several individuals have studied special cases of the following general problem: if \(X \) and \(Y \) are compacta in Euclidean \(n \)-space \(E^n \), under what conditions is \(E^n - X \cong E^n - Y \) equivalent to \(\text{Sh}(X) = \text{Sh}(Y) \)? The results of this paper concern compacta whose shape classes include a space having dimension in the trivial range with respect to \(n \). We give a global homotopy condition under which the equivalence holds for such compacta. Before stating our main result we make some definitions.

Definition. Let \(A^n \) be a compact subset of the manifold \(M \). \(X \) is said to satisfy the inessential loops condition (ILC) if for every neighborhood \(U \) of \(X \) in \(M \) there exists a neighborhood \(V \) of \(A \) in \(U \) such that each loop in \(V - X \) which is null-homotopic in \(V \) is also null-homotopic in \(U - X \). (See §2 for the definitions of other loop conditions and a discussion of some of the relations among them.) For any compactum \(X \), the shape dimension of \(X \) (\(\text{Sd}(X) \)) is defined by \(\text{Sd}(X) = \min\{\dim Y : \text{Sh}(X) = \text{Sh}(Y)\} \). We say that \(k \) is in the trivial range with respect to \(n \) if \(2k + 2 < n \).

Theorem 1. Let \(X \) and \(Y \) be compacta in \(E^n, n > 5 \), satisfying ILC and having shape dimension in the trivial range with respect to \(n \). Then \(E^n - X \cong E^n - Y \) if and only if \(\text{Sh}(X) = \text{Sh}(Y) \).

As a consequence of Theorem 1 we prove the following theorem about compacta with the shape of a topological group. For example, \(A \) and \(B \) in Theorem 2 could be solenoids. Recall that every finite dimensional compact connected abelian topological group is metrizable [16].

Received by the editors September 22, 1975.

Key words and phrases. Shape, loop conditions, weak flatness.

1The material in this paper will be included in the author's Ph.D. dissertation written under the direction of Professor T. B. Rushing at the University of Utah. Research partially supported by a University of Utah Graduate Research Fellowship.

© American Mathematical Society 1976
Theorem 2. Let $X, Y \subseteq E^n$, $n \geq 5$, be globally 1-alg compacta and let A, B be compact connected abelian topological groups with $2 \dim A + 2 \leq n$. If $\text{Sh}(X) = \text{Sh}(A)$ and $\text{Sh}(Y) = \text{Sh}(B)$ then the following are equivalent:

(i) $E^n - X \approx E^n - Y$,

(ii) $\text{Sh}(X) = \text{Sh}(Y)$, and

(iii) A and B are topologically isomorphic.

Theorem 1 is related to several other recent results. Chapman [3] proved that if $\dim X, \dim Y < k$ and $3k + 3 < n$, then there are copies X' and Y' of X and Y, respectively, in E^n so that $\text{Sh}(X) = \text{Sh}(Y)$ if and only if $E^n - X' \approx E^n - Y'$. Geoghegan and Summerhill [5] refined Chapman's theorem by reducing the unnecessary condition $3k + 3 < n$ to the trivial range and by making more explicit which copies of X and Y are acceptable. Specifically, they required that the copies of X and Y be 1-ULC. Hollingsworth and Rushing [7] improved this result by replacing 1-ULC (which is a local condition) with the small loops condition (which is global). The global condition is more desirable for a weak flatness theorem of this type—see [7] for more details.

The work of Hollingsworth and Rushing is generalized in Theorem 1 since the same conclusion is drawn for compacta which themselves do not necessarily have dimension in the trivial range but merely have the shape of such. Coram, Daverman and Duvall [4] have previously proved Theorem 1 in the special case that $\dim X < n - 3$ and Y is a finite polyhedron with dimension in the trivial range.

Theorem 2 answers a question raised by J. Keesling.

The author wishes to express his appreciation to Professor T. B. Rushing for a great deal of help with this research.

2. Definitions and notation. Let X be a compactum in the manifold M^n. X is said to satisfy the cellularity criterion (small loops condition) if given a neighborhood U of X there exists a neighborhood V of X in U (and a number $\varepsilon > 0$) such that any loop in $V - X$ (any ε-loop in $V - X$) is null-homotopic in $U - X$. X is said to be globally 1-alg in M if given a neighborhood U of X there exists a neighborhood V of X in U such that any loop in $V - X$ which is null-homologous in $U - X$ is null-homotopic in $U - X$.

These loop conditions are closely related. For example if $\dim X < n - 2$, then ILC is equivalent to the small loops condition. On the other hand, if X has the shape of a point, then ILC is equivalent to the cellularity criterion. In case $\text{Sd}(X) < n - 3$, Alexander duality shows that the inclusion induced homomorphism $H_1(V - X) \to H_1(V)$ is an isomorphism. Hence if $\text{Sd}(X) < n - 3$, X globally 1-alg implies X satisfies ILC. Finally, it can easily be seen that if X has the shape of the inverse limit of a sequence of ANR's where each of these ANR's has abelian fundamental group, then X is globally 1-alg whenever X satisfies ILC.

Throughout this paper the symbols \approx and \simeq will have the following meanings: \approx means "is homeomorphic to," "is isomorphic to," or "is topologically isomorphic to," depending on the context; while \simeq means "is homotopic to." H_\ast denotes reduced singular homology, H^\ast Čech cohomology and H^\ast_\ast Alexander cohomology with compact supports [13] all with integer coefficients.
All spaces are assumed to be metric.

For definitions of concepts related to shape theory, the reader is referred to [1] and [10]. For all other definitions consult [12].

3. **Compacta in standard position.** We begin by making a definition [3] which is basic to the entire proof of Theorem 1.

Definition. Let $X \subset E^n$ be a compactum and $k = \text{Sd}(X)$. X is in **standard position** if there exist sequences $(P_i)_{i=1}^\infty$ and $(N_i)_{i=1}^\infty$ such that

(i) each P_i is a compact polyhedron in E^n, $\dim P_i < k$,
(ii) each N_i is a regular neighborhood of P_i in E^n,
(iii) each $N_{i+1} \subset \text{int } N_i$, and
(iv) $X = \bigcap_{i=1}^\infty N_i$.

If $\dim X = k$ and $2k + 1 \leq n$, then the set of embeddings $f: X \to E^n$ such that $f(X)$ is in standard position is a dense G_δ-subset of the set of maps of X into E^n [5, Theorem 3.3]. In this section we show that compacta in E^n which satisfy ILC and have shape dimension less than $n - 2$ are in standard position.

For any pair (A, B), the notation $\pi_i(A, B) = 0$ means that every map $f: (\Delta^i \times 0, \partial \Delta^i \times 0) \to (A, B)$ extends to a map $\tilde{f}: (\Delta^i \times [0, 1], \partial \Delta^i \times [0, 1] \cup \Delta^i \times 1) \to (A, B)$. ($\Delta^i$ denotes the standard i-simplex.)

Lemma 1. Let $X \subset E^n$ be a compactum satisfying ILC and let $k = \text{Sd}(X)$. Then $\pi_i(U, U - X) = 0$, $0 \leq i \leq n - k - 1$, for every compact neighborhood U of X in E^n.

Proof. It may be assumed that U is connected because otherwise the following proof can be applied to each component of U. Since $\text{Sd}(X) = k$, there exists a compactum Y with $\dim Y = k$ and $\text{Sh}(X) = \text{Sh}(Y)$. Embed Y in E^{2k+1} in standard position; say $Y = \bigcap_{i=1}^\infty N_i$ where each N_i is a regular neighborhood of P_i in E^{2k+1}, $\dim P_i < k$ and $N_{i+1} \subset \text{int } N_i$.

We first construct a convenient sequence of neighborhoods whose intersection is X. Let $(f_i, X, Y)_E^{E^{k+1}, E^n}$ and $(g_i, Y, X)_E^{E^{k+1}, E^n}$ be fundamental sequences which show that X and Y have the same shape [2, Theorem 2.4]. Choose an integer j such that $g_i(N_i) \subset U$ for almost all i. Now choose a neighborhood V of X such that $f_i(V) \subset N_j$ and $g_i f_i|V \approx 1_V$ in U for almost all i. It may be assumed that $g_i P_i$ is piecewise linear. Thus the inclusion map $\beta: V \subset U$ is homotopic in U to a map of V into $g_i(P_i)$. Inductively then we can construct a sequence of neighborhoods V_i in U and polyhedra K_i such that $\dim K_i < k$, $V_i \cup K_i \subset V_{i-1}$, $\bigcap_{i=1}^\infty V_i = X$ and the inclusion map $V_i \to V_{i-1}$ is homotopic in V_{i-1} to a map of V_i into K_i.

Consider the universal cover $p: \widetilde{U} \to U$. Denote $p^{-1}(V_i)$ by \widetilde{V}_i and $p^{-1}(X)$ by \widetilde{X}. We show that $H^q_c(\widetilde{X}) = 0$ for $q > k$. Let $f_i: V_i \times [0, 1] \to V_{i-1}$ be a homotopy such that $f_0 = 1_{V_i}$ and $f_1(V_i) \subset K_i$. The diagram

\[
\begin{array}{ccc}
\widetilde{U} & \xrightarrow{p} & U \\
\widetilde{V}_i \searrow & & \nearrow p \\
\end{array}
\]
commutes, so $f_\ast p|\overline{V}_i$ can be lifted to a homotopy g_\ast. Since $g_\ast(\overline{V}_i) \subset p^{-1}(K_i)$ and p is a local homeomorphism, $\dim g_\ast(\overline{V}_i) \leq k$.

Let \overline{V}_i^+ and \overline{X}^+ denote the one-point compactifications of \overline{V}_i and \overline{X} respectively. Since g_\ast is a proper map, g_\ast can be extended to $\tilde{g}_\ast: \overline{V}_i^+ \to \overline{V}_i^+$. Hence the inclusion $\overline{V}_i^+ \hookrightarrow \overline{V}_i^{i+1}$ factors up to homotopy through a map into a space of dimension at most k. Thus the continuity axiom implies that $H^q(\overline{X}^+) = 0$ for $q > k$. Finally [13, Corollary 6.6.12] shows that $H^q(\overline{X}) = 0$, $q > k$.

Now Alexander duality [13, Theorem 6.9.10] gives $H_q(\tilde{U}, \tilde{U} - \overline{X}) \approx H^{n-q}(\overline{X}) = 0$ for $n - q > k + 1$. We look at the homology sequence of the pair $(\tilde{U}, \tilde{U} - \overline{X})$ and see that $H_0(\tilde{U} - \overline{X}) = 0$. So $\tilde{U} - \overline{X}$ is connected.

Let V_j and X_* denote the one-point compactifications of V_j and X respectively. Since g_\ast is a proper map, g_\ast can be extended to $\tilde{g}_\ast: \overline{V}_j^+ \to \overline{V}_j^+$.

Hence the inclusion $\overline{V}_j^+ \hookrightarrow \overline{V}_j^{j+1}$ factors up to homotopy through a map into a space of dimension at most k. Thus the continuity axiom implies that $H^q(\overline{X}^+) = 0$ for $q > k$. Finally [13, Corollary 6.6.12] shows that $H^q(\overline{X}) = 0$, $q > k$.

Now Alexander duality [13, Theorem 6.9.10] gives $H_q(\tilde{U}, \tilde{U} - \overline{X}) \approx H^{n-q}(\overline{X}) = 0$ for $n - q > k + 1$. We look at the homology sequence of the pair $(\tilde{U}, \tilde{U} - \overline{X})$ and see that $H_0(\tilde{U} - \overline{X}) = 0$. So $\tilde{U} - \overline{X}$ is connected.

Let $\pi_*(U, U - X) = 0$ since if $f: (\Delta^1 \times 0, \partial \Delta^1 \times 0) \to (U, U - X)$, f can be lifted to $f': (\Delta^1 \times 0, \partial \Delta^1 \times 0) \to (\tilde{U}, \tilde{U} - \overline{X})$. $\tilde{U} - \overline{X}$ is connected, so $f'(0)$ and $f'(1)$ can be joined by an arc in $\tilde{U} - \overline{X}$. The resulting loop is null-homotopic in \tilde{U}. The projection down of this homotopy is the desired homotopy in U.

We next prove that $\pi_i(\tilde{U} - \overline{X}) = 0$. Let $f: S^1 \to \tilde{U} - \overline{X}$ be a loop. f extends to $\tilde{f}: \Delta^2 \to \tilde{U}$. Consider $p\tilde{f}: (\Delta^2, S^1) \to (U, U - X)$. Choose $V \subset U$ to be a neighborhood of X satisfying the inessential loops condition relative to U.

Now triangulate Δ^2 so that each simplex whose image intersects X is mapped into V. Using the fact that $\pi_0(V, V - X) = 0$ (by the same argument as was used to show that $\pi_0(U, U - X) = 0$), we can push the image of the 1-skeleton of this triangulation off X. If σ is a 2-simplex in Δ^2, $p\tilde{f}|\partial \sigma: \partial \sigma \to V - X$ and $p\tilde{f}|\partial \sigma \simeq 0$ in V, so $p\tilde{f}|\sigma$ may be replaced by a map of σ into $U - X$ which agrees with $p\tilde{f}$ on $\partial \sigma$. Thus $p\tilde{f}|S^1 \simeq 0$ in $U - X$. Lifting this homotopy, we see that $f \simeq 0$ in $\tilde{U} - \overline{X}$.

Finally, we apply the relative Hurewicz Theorem [13, Theorem 7.5.4] and conclude that $\pi_i(\tilde{U}, \tilde{U} - \overline{X}) \approx H_i(\tilde{U}, \tilde{U} - \overline{X}) = 0$, $2 \leq i \leq n - k - 1$. The homotopy lifting property now can be used to show that $\pi_i(U, U - X) = 0$, $i \leq n - k - 1$.

Lemma 2. Let $X \subset E^n$ be a compactum such that $\text{Sd}(X) \leq n - 3$. Given a neighborhood U of X there exists a neighborhood V of X such that for any compact polyhedron $K \subset V$ with $\dim K \leq n - 3$ there is a polyhedron P and a regular neighborhood N of P such that $K \subset \text{int} N \subset N \subset U$ and $\dim P \leq \text{Sd}(X)$.

Proof. The proof is by induction on $k = \dim K$. If $k \leq \text{Sd}(X)$, $P = K$ and $V = U$ will work; so it may be assumed that $k > \text{Sd}(X)$ and that the lemma is true for polyhedra of dimension less than k. Choose $V' \subset U$ using this inductive hypothesis. As before choose a neighborhood V of X in V' and a polyhedron $P' \subset V'$ such that $\dim P' \leq \text{Sd}(X)$ and the inclusion $A \hookrightarrow V'$ is homotopic in V' to a map of V into P'.

Let $f: K \times [0, 1] \to V'$ be a homotopy such that $f_0 = 1_K$ and $f_1(K) \subset P'$.

By Zeeman’s Piping Lemma [15, Lemma 48], we may assume that there exists a polyhedron $J \subset K \times I$ such that

1. $S(J) \subset J$,
2. $\dim J \leq 2k - n + 2 \leq k - 1$,
3. $\dim \left(J \cap (K^{k-1} \times [0, 1]) \right) \leq 2k - n + 1 \leq k - 2$, and
4. $K \times [0, 1] \to J \cup (K^{k-1} \times [0, 1]) \cup K \times 1$. (Here K^i denotes the i-skeleton of K.)
Let \(L \) be a \((k-2)\)-dimensional subpolyhedron of \(K \) such that \(L \supseteq K^{k-2} \) and \(L \times [0, 1] \supseteq J \cap (K^{k-1} \times [0, 1]) \). By induction it may be assumed that \(f(L \times [0, 1] \cup J) \cup P' \subseteq N \subseteq U \) where \(N \) is a regular neighborhood of some polyhedron \(P \) with dimension \(\leq \text{Sd}(X) \). It remains only to engulf \((k-1)\)- and \(k \)-simplexes of \(K \).

\[K^{k-1} \times [0, 1] \searrow K^{k-2} \times [0, 1] \cup K^{k-1} \times 1 \cup (L \cap K^{k-1}) \times [0, 1]. \]

The image of the latter set is already contained in \(N \) and contains \(S(f|K^{k-1} \times [0, 1]) \). Following the image of this collapse, \(K^{k-1} \) can be engulfed with \(N \). Similarly \(K \times [0, 1] \searrow J \cup K^{k-1} \times [0, 1] \cup K \times 1 \), so \(N \) can be pushed out to cover all of \(K \).

Lemma 3. Let \(X \subset \mathbb{R}^n, n > 5 \), be a compactum with \(\text{Sd}(X) < n-3 \). Then \(X \) satisfies ILC if and only if \(X \) is in standard position.

Proof. It suffices to show that given a neighborhood \(U \) of \(X \) there exists a polyhedron \(P \) in \(U \) with \(\text{dim} P \leq \text{Sd}(X) \) and a regular neighborhood \(N \) of \(P \) such that \(X \subset \text{int} N \subset N \subset U \). Let \(V \subset U \) be given by Lemma 2 and let \(M \) be a compact PL manifold neighborhood of \(X \) in \(V \). Denote the \((n-3)\)-skeleton of \(M \) by \(M^{n-3} \) and the dual 2-skeleton by \(M_2^* \). By Lemma 2 there exists a polyhedron \(P \) with \(\text{dim} P \leq \text{Sd}(X) \) and a regular neighborhood \(N \) of \(P \) such that \(M^{n-3} \subset \text{int} N \subset N \subset U \).

By Lemma 1 and Stallings' engulfing theorem [14], there exists a PL homeomorphism \(h_1: \text{int} M \to \text{int} M \) with compact support such that \(h_1(\text{int} M - X) \supseteq M_2^* \cap \text{int} M \). Extend \(h_1 \) via the identity to \(U \). Let \(h_2 \) be a homeomorphism of \(U \) which pushes \(N \) across the join structure between \(M^{n-3} \) and \(M_2^* \) until \(M \subset h_1(U - X) \cup h_2(\text{int} N) \). Then \(h_1^{-1} h_2(N) \) is the regular neighborhood we are looking for.

4. Proofs of Theorems 1 and 2

In this section we complete the proof of Theorem 1 and prove Theorem 2. The following lemma is used to keep an inductive argument going in the proof of Theorem 1.

Lemma 4. Let \(X, Y \subset \mathbb{R}^n, n > 5 \), be compacta in standard position with shape dimensions in the trivial range with respect to \(n \) and let \(\{f_i, X, Y\} \) and \(\{f'_i, Y, X\} \) be fundamental sequences which are homotopy inverse to one another. Let \(U_0 \) be a neighborhood of \(X \) and \(h \) be a PL homeomorphism of \(\mathbb{R}^n \) such that \(Y \subset h(U_0) \) and such that there exists a neighborhood \(W_0 \) of \(Y \) with \(h^{-1}|W_0 = f_i|W_0 \) in \(U_0 \) for almost all \(i \). Then for every open set \(V_0 \subset \mathbb{R}^n \) there exists a PL homeomorphism \(q \) of \(\mathbb{R}^n \) such that \(q|E^n - U_0 = h|E^n - U_0 \) \(X \subset q^{-1}(V_0) \), and \(q|U_1 = f_i|U_1 \) in \(V_0 \) for almost all \(i \) where \(U_1 \) is some neighborhood of \(X \).

Proof. Assume that \(X = \bigcap_{j=1}^\infty M_j \) where each \(M_j \) is a regular neighborhood of a compact polyhedron \(L_j \) and that \(\text{dim} L_j \leq \text{Sd}(X) \). Choose neighborhoods \(V \subset V_0 \) of \(Y \) and \(U \subset U_0 \) of \(X \) and an integer \(i_0 \) such that \(h^{-1}|V = f'_i|V \) in \(U_0 \), \(f_i|U = f_{i+1}|U \) in \(V \), and \(f'_i|f_i|U = 1_U \) in \(U_0 \) for \(i > i_0 \). Let \(j \) be an integer large enough so that \(M_j \subset U \). \(f_{i_0}|L_j \) can be approximated by a PL embedding \(\hat{f}_j \).

Notice that \(h^{-1} \circ \hat{f} \approx f'_{i_0} \circ \hat{f} \approx f'_{i_0} \circ f_{i_0}|L_j \approx 1_{L_j} \) in \(U_0 \).

So \(\hat{f} = h|L_j \) in \(h(U_0) \). Hence there exists a PL homeomorphism \(r \) of \(E^n \) which is the identity outside \(h(U_0) \) and such that \(rh|L_j = \hat{f} \) [6]. It may be assumed
that \(rh(M_j) \subset V \). Taking \(q = rh \) and \(U_1 = M_j \) gives the desired conclusion.

Proof of Theorem 1. Suppose that \(Sh(X) = Sh(Y) \). A homeomorphism of \(E^n - X \) onto \(E^n - Y \) can be constructed using the technique of [5, Lemma 4.2]. Lemma 4 above replaces Lemma 4.1 of [5]. Now suppose that \(E^n - X \cong E^n - Y \). There exist \(X' \) and \(Y' \) with dimension in the trivial range satisfying \(Sh(X) = Sh(X') \) and \(Sh(Y) = Sh(Y') \). It may be assumed that \(X' \) and \(Y' \) are embedded in \(E^n \) as 1-ULC subsets [7, Lemmas 2 or 5, §3]. The first part of the theorem implies that \(E^n - X' \cong E^n - Y' \), so \(Sh(X) = Sh(Y) \) by [5] again.

Proof of Theorem 2. The implication \((iii) \Rightarrow (ii)\) is obvious and \((ii) \Rightarrow (iii)\) is exactly Corollary 1.3 of [9]. Theorem 1 gives \((iii) \Rightarrow (i)\). Our proof that \((i) \Rightarrow (iii)\) actually establishes a stronger result which we state as Theorem 3.

Theorem 3. Let \(X, Y \subset E^n \) be compacta and let \(A, B \) be compact connected abelian topological groups with \(Sh(X) = Sh(A) \) and \(Sh(Y) = Sh(B) \). Then \(E^n - X \cong E^n - Y \) implies \(A \approx B \).

Proof. Suppose \(E^n - X \cong E^n - Y \). Then by Alexander duality [13, Theorem 6.2.16] \(H^1(X) \cong H^1(Y) \); hence \(H^1(A) \cong H^1(B) \) [10, Theorem 16]. Therefore \(char A \approx char B \) [8, Theorem 1.4] and so Pontryagin duality [11, Theorem 52] shows that \(A \approx B \).

References