Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The existence of dual modules


Author: D. D. Anderson
Journal: Proc. Amer. Math. Soc. 55 (1976), 258-260
DOI: https://doi.org/10.1090/S0002-9939-1976-0399067-5
MathSciNet review: 0399067
Full-text PDF

Abstract | References | Additional Information

Abstract: In this note we show that a Noetherian module has a dual module if and only if it satisfies $ AB{5^{\ast}}$. A connection between completeness and $ AB{5^{\ast}}$ is also established.


References [Enhancements On Off] (What's this?)

  • [1] R. Baer, Dualism in abelian groups, Bull. Amer. Math. Soc. 43 (1937), 121-124. MR 1563499
  • [2] H. Bass, Descending chains and the Krull ordinal of commutative Noetherian rings, J. Pure Appl. Algebra 1 (1971), no. 4, 347-360. MR 46 #1778. MR 0302634 (46:1778)
  • [3] E. W. Johnson, A note on quasi-complete local rings, Colloq. Math. 21 (1970), 197-198. MR 42 #262. MR 0265352 (42:262)
  • [4] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511-528. MR 20 #5800. MR 0099360 (20:5800)
  • [5] -, Modules with descending chain condition, Trans. Amer. Math. Soc. 97 (1960), 495-508. MR 30 #122. MR 0169879 (30:122)
  • [6] M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., no. 13, Interscience, New York, 1962. MR 27 #5790. MR 0155856 (27:5790)
  • [7] D. W. Sharpe and P. Vamos, Injective modules, Cambridge Univ. Press, Cambridge, 1972. MR 0360706 (50:13153)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0399067-5
Keywords: $ AB{5^{\ast}}$, complete module, dual module
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society