A CHARACTERIZATION OF C^∞-SUFFICIENT k-JETS

WOJCEICH KUCHARZ

Abstract. We improve some results of Mather and Arnold and find several necessary and sufficient conditions of sufficiency of k-jets. As a corollary we prove that the set of C^∞-sufficient k-jets is a semialgebraic subset of the space of k-jets of C^∞ mappings $F: (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0)$.

1. Introduction. Let \mathcal{E} denote the local \mathbb{R}-algebra of germs at $0 \in \mathbb{R}^n$ of all C^∞ functions from \mathbb{R}^n to \mathbb{R}, and let \mathfrak{M} be the unique maximal ideal of \mathcal{E}. For a given $f \in \mathcal{E}$, let $I(f)$ denote the ideal in \mathcal{E} generated by $\partial f / \partial x_1, \ldots, \partial f / \partial x_n$. The space of k-jets of C^∞ mappings $h: (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^p, 0)$ is denoted by $J_k(n, p)$ and, by definition, $J_k(n, 1) = J_k(f)$ is the k-jet of f. Let \mathfrak{G}_k denote the group of germs of C^∞ diffeomorphisms $h: (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0)$, such that $j^k(h)$ coincides with the k-jet of the identity mapping \mathbb{R}^n onto itself. Clearly \mathfrak{G}_0 is the set of all local diffeomorphisms around 0 in \mathbb{R}^n.

Definition. A k-jet $w \in J_k$ is called \mathfrak{G}_l sufficient ($0 \leq l \leq k$) if for any $f \in \mathcal{E}$ such that $j^k(f) = w$, there exists $h \in \mathfrak{G}_l$ such that $f \circ h = w$. A \mathfrak{G}_0 sufficient jet is called sufficient.

The following theorems are known:

Theorem I (Mather [4], Arnold [1]). Let $f \in \mathfrak{M}$ and $1 \leq l \leq k$. Suppose $\mathfrak{M}^{k+1} \subseteq \mathfrak{M}^{l+1} I(f)$. Then the k-jet $j^k(f)$, of f is \mathfrak{G}_l sufficient.

Theorem II (Mather [3]). Let $f \in \mathfrak{M}$ and $0 \leq l \leq k$. If the k-jet $j^k(f)$ is \mathfrak{G}_l sufficient, then $\mathfrak{M}^{k+1} \subseteq \mathfrak{M}^{l+1} I(f)$.

In particular for $1 \leq l \leq k$, a k-jet $w \in J_k$ is \mathfrak{G}_l sufficient if and only if $\mathfrak{M}^{k+1} \subseteq \mathfrak{M}^{l+1} I(w)$. As a corollary one can observe that for $w \in J_k$, the condition $\mathfrak{M}^{k+1} \subseteq \mathfrak{M}^2 I(w)$ implies the sufficiency of w; and if w is sufficient, then $\mathfrak{M}^{k+1} \subseteq \mathfrak{M} I(w)$. However, none of these conditions characterizes the sufficiency of k-jets.

Counterexample 1 (communicated by J. Robbin). For $w = x^2 + 2xy^2 \in J^3$ we have $\mathfrak{M}^4 \subseteq \mathfrak{M} I(w)$, but the jet w is not sufficient. In fact, $0 \in \mathbb{R}^2$ is an isolated critical point for w, but not for $w + y^4$.

Counterexample 2. Let $w(x, y) = x^3 + xy^3 \in J^4$. Arnold proved [1, p. 12] that the jet w is sufficient (it also follows from our Theorem 2). However, one can verify that $y^5 \not\in \mathfrak{M}^2 I(w)$ and, hence, $\mathfrak{M}^5 \not\subseteq \mathfrak{M}^2 I(w)$.

Here we shall improve the results above, and find necessary and sufficient

Received by the editors August 13, 1974.
Key words and phrases. k-jets of C^∞ mappings.

© American Mathematical Society 1976
conditions of sufficiency of k-jets (Theorem 2). We show also that the set of sufficient k-jets is a semialgebraic subset of J^k (Theorem 3).

2. Results. Put \(\mathcal{R}^k \) = \{ \(J^k(h) \in J^k(n, n): h \in \mathcal{R}_l \), \(l = 0, \ldots, k \). It is clear that one can consider \(J^k \) as a finite dimensional vector space over \(\mathbb{R} \) and \(\mathcal{R}^k_0 \) (respectively, \(\mathcal{R}^k_0 \), \(l = 1, \ldots, k \)) as an open subset (respectively, an affine subspace) of \(J^k \). It is well known that \(\mathcal{R}^k \) has the structure of a Lie group, and as such it acts smoothly on the left on \(J^k \), by the formula \(j^k(h) \cdot j^k(f) = j^k(f \circ h^{-1}) \). Hence, any orbit of \(\mathcal{R}^k \) in \(J^k \) is a submanifold in \(J^k \). For \(f \in \mathcal{M} \), denote by \(V^k(f) \) the orbit of \(\mathcal{R}^k \) in \(J^k \) passing through \(j^k(f) \); codim \(V^k(f) \) is the codimension of \(V^k(f) \) in \(J^k \).

Define \(\pi: J^{k+1} \ni z \rightarrow j^k(z) \in J^k \). For \(f \in \mathcal{M} \) and \(0 \leq s \leq q \), let

\[
A^{s}_z(f): (\mathcal{M}^{s+1}/\mathcal{M}^{q+1})^n \rightarrow \mathcal{M}^{s+1}/\mathcal{M}^{q+1}
\]

be the \(\mathbb{R} \)-linear mapping defined by the formula

\[
A^{s}_z(f)(\bar{u}_1, \ldots, \bar{u}_n) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \bar{u}_i,
\]

where \(\bar{u} \) denotes the equivalence class of \(u \in \mathcal{M} \) modulo \(\mathcal{M}^{q+1} \). Note that \(j^{q-s}(f) = j^{q-s}(g) \) implies \(A^{s}_z(f) = A^{s}_z(g) \).

Theorem 1. Let \(w \in J^k \) and \(1 \leq l \leq k \). The following conditions are equivalent:

1. The k-jet \(w \) is \(\mathcal{R}_l \) sufficient;
2. \(\mathcal{M}^{k+1} \subset \mathcal{M}^{l+1} \pi(w) \);
3. \(\mathcal{M}^{k+1} \subset \mathcal{M}^{l+1} \pi(f) \) for each \(f \in \mathcal{M} \) with \(j^k(f) = w \);
4. \(\pi^{k+1} \subset \pi^{l+1}(f) \) for some \(f \in \mathcal{M} \) with \(j^k(f) = w \);
5. \(\pi^{k+1} + \text{rank} A^k_0(w) = \text{rank} A^k_0(w) \);
6. \(\pi^{k+1} + \text{rank} A^k_0(f) = \text{rank} A^k_0(f) \) for each \(f \in \mathcal{M} \) with \(j^k(f) = w \);
7. \(\pi^{k+1} + \text{rank} A^k_0(f) = \text{rank} A^k_0(f) \) for some \(f \in \mathcal{M} \) with \(j^k(f) = w \);
8. \(\text{codim} V^k_0(w) = \text{codim} V^k_0(f) \);
9. \(\text{codim} V^k_0(f) = \text{codim} V^k_0(f) \) for each \(f \in \mathcal{M} \) with \(j^k(f) = w \);
10. \(\text{codim} V^k_0(f) = \text{codim} V^k_0(f) \) for some \(f \in \mathcal{M} \) with \(j^k(f) = w \).

Corollary 1. For \(f \in \mathcal{M} \) and \(1 \leq l \leq k \) the following conditions are equivalent:

1. \(j^k(f) \) is \(\mathcal{R}_l \) sufficient;
2. \(\forall s \geq k, \text{codim} V^{k}_l(f) = \text{codim} V^{k}_s(f) \);
3. \(\exists s \geq k \Rightarrow \text{codim} V^{k}_l(f) = \text{codim} V^{k}_s(f) \).

Theorem 2. For a given k-jet \(w \in J^k \) the following conditions are equivalent:

1. The k-jet \(w \) is sufficient;
2. \(\mathcal{M}^{k+1} \subset \mathcal{M} \pi(z) \) for each \(z \in \pi^{-1}(w) \);
3. \(\mathcal{M}^{k+1} \subset \mathcal{M} \pi(f) \) for each \(f \in \mathcal{M} \) with \(j^k(f) = w \);
4. \(\pi^{k+1} + \text{rank} A^k_0(z) = \text{rank} A^k_0(z) \) for each \(z \in \pi^{-1}(w) \);
5. \(\pi^{k+1} + \text{rank} A^k_0(z) = \text{rank} A^k_0(z) \) for each \(f \in \mathcal{M} \) with \(j^k(f) = w \);
6. \(\text{codim} V^k_0(z) = \text{codim} V^k_0(z) \) for each \(z \in \pi^{-1}(w) \);
7. \(\text{codim} V^k_0(f) = \text{codim} V^k_0(f) \) for each \(f \in \mathcal{M} \) with \(j^k(f) = w \).

From this we have...
Corollary 2. If a k-jet $j^k(f)$ of $f \in \mathcal{M}$ is sufficient, then $\text{codim } \mathcal{V}_0^s(f) = \text{codim } \mathcal{V}_0^k(f)$ for each $s \geq k$.

Observe that, given $1 \leq l \leq k$ and $f, g \in \mathcal{M}$ with $j^k(f) = j^k(g)$, we have $\mathcal{M}^{k+1} \subset \mathcal{M}^{l+1} I(f)$ if and only if $\mathcal{M}^{k+1} \subset \mathcal{M}^{l+1} I(g)$ (by Nakayama's lemma). If $l = 0$, the last equivalence does not hold (see Theorem 2 and Counterexample 1).

Theorem 3. The set Ω^k_l of \mathcal{R}_i sufficient k-jets is a semialgebraic subset of J^k, $0 \leq l \leq k$.

One can estimate the codimension of Ω^k_l in J^k. Given $k, l, p \in \mathbb{N}$, $k \geq p$, put $\omega(k, l) = \sup(r \in \mathbb{N}: k \geq (r + l)^n + l + 1)$, and denote by $\pi_{k, p} : J^k \to J^p$ the natural linear projection of J^k onto J^p.

Proposition 1. $\text{codim } \Omega^k_l \leq \dim \ker \pi_{k, \omega(k, l)}$ for $l = 1, \ldots, k$ and $\text{codim } \Omega^k_0 \leq \text{codim } \Omega^k_k$.

3. Proofs. Put $\pi^k : \mathcal{M} \ni g \to j^k(g) \in J^k$. We need the following:

Lemma 1 [3]. Let $f \in \mathcal{M}$ and $0 \leq l \leq k$. The linear subspace $\pi^k(\mathcal{M}^{l+1} I(f))$ is the tangent space of $V^k_l(f)$ at $j^k(f)$.

Lemma 2. For given $f \in \mathcal{M}$ and $0 \leq l \leq k$, the following conditions are equivalent:

(i) $\mathcal{M}^{k+1} \subset \mathcal{M}^{l+1} I(f)$;
(ii) $\text{rank } A^k_{l+1} (f) = (\frac{l+k}{k+1}) + \text{rank } A^k_{l} (f)$;
(iii) $\text{codim } \mathcal{V}^k_{l+1} (f) = \text{codim } \mathcal{V}^k_{l} (f)$.

Proof. Observe that, by Nakayama’s lemma, (i) is equivalent to

\[(*) \quad \mathcal{M}^{k+1} + \mathcal{M}^{l+1} I(f) = \mathcal{M}^{k+2} + \mathcal{M}^{l+1} I(f). \]

Condition $(*)$ is trivially equivalent to

\[(**) \quad \dim_{\mathbb{R}} (\mathcal{M}^{k+1} + \mathcal{M}^{l+1} I(f)/\mathcal{M}^{k+2}) = \dim_{\mathbb{R}} (\mathcal{M}^{k+2} + \mathcal{M}^{l+1} I(f)/\mathcal{M}^{k+2}). \]

The well-known fact that \mathbb{R}-linear spaces $(\mathcal{M}^{k+1} + \mathcal{M}^{l+1} I(f)/\mathcal{M}^{k+1})$ and $(\mathcal{M}^{k+1} + \mathcal{M}^{l+1} I(f)/\mathcal{M}^{k+2})/(\mathcal{M}^{k+1}/\mathcal{M}^{k+2})$ are isomorphs, and $(**)$ imply (i) \iff (ii), because $(\mathcal{M}^{l+1} + \mathcal{M}^{l+1} I(f)/\mathcal{M}^{l+1})$ is the image of $A^k_{l} (f)$ and $\dim_{\mathbb{R}} \mathcal{M}^{k+1}/\mathcal{M}^{k+2} = (\frac{k+l}{k+1})$.

Lemma 1 implies that \mathbb{R}-linear spaces $(\mathcal{M}/\mathcal{M}^{k+1} + \mathcal{M}^{l+1} I(f))$ and $J^k/\mathcal{V}^k_{l} (f)$ are isomorphs, $z = j^k(f)$. It is clear that $(*)$ is equivalent to

\[(***) \quad \dim_{\mathbb{R}} (\mathcal{M}/\mathcal{M}^{k+1} + \mathcal{M}^{l+1} I(f)) = \dim_{\mathbb{R}} (\mathcal{M}/\mathcal{M}^{k+2} + \mathcal{M}^{l+1} I(f)). \]

Combining these facts one obtains (i) \iff (iii).

Proof of Theorem 1. (1) \iff (2) \iff (2') \iff (2'') follows from Theorems I and II. (3) \iff (3') \iff (3'') is an immediate consequence of the definition of $A^k_{l} (f)$.

(2') \iff (3) \iff (4) follows from Lemma 2.

(4) \iff (4') \iff (4''). The fact that $j^k(w) = j^k(f)$ implies $\mathcal{M}^{k+s+1} + \mathcal{M}^{l+1} I(w) = \mathcal{M}^{k+s+1} + \mathcal{M}^{l+1} I(f)$, $s = 0, 1$, because $l \geq 1$. Equalities $\text{codim } \mathcal{V}^k_{l+s} (f) = \text{codim } \mathcal{V}^k_{l+s} (w)$, $s = 0, 1$, $l \geq 1$, follow from the last observation, since \mathbb{R}-
linear spaces \((\mathfrak{M}/\mathfrak{M}^{k+s+1} + \mathfrak{M}^{l+1} I(f))\) and \(J^{k+s}/T_z V^{k+s}(f)\) are isomorphs, \(f \in \mathfrak{M}, z = j^{k+s}(f), s = 0, 1, l \geq 1.\)

Proof of Corollary 1. (i) \(\Rightarrow\) (ii) and (iii) \(\Rightarrow\) (i) follow by induction from Theorem 1 (observe that if \(j^q(f)\) is \(R_q\) sufficient, then \(j^q(f)\) is also \(R_q\) sufficient for \(q \geq k\)). Implication (ii) \(\Rightarrow\) (iii) is trivial.

Proof of Theorem 2. (a) \(\Rightarrow\) (b) and (b) \(\Rightarrow\) (b') follow, respectively, from Theorem II and Nakayama's lemma.

(b) \(\Rightarrow\) (a). First recall the following theorem of Mather [3, IV]: Let \(C^\infty\) Lie group \(G\) act on \(C^\infty\) manifolds \(M\) and \(N\). Suppose that \(C^\infty\) mapping \(F: M \rightarrow N\) is \(G\)-submersion (i.e. \(F\) is a submersion and \(F(xg) = F(x)g\) for \(x \in M, g \in G\)). Let \(y \in N\) and \(V = F^{-1}(y)\). If \(V\) is a connected submanifold of \(M\), then \(V\) is contained in a single orbit of the group \(G\) in \(M\) if and only if \(T_x V \subset T_x(xG)\) for each \(x \in V\).

We shall use this theorem in the following situation. The group \(R_{k+1}\) acts on \(J^{k+1}\). Define the action of \(R_{k+1}\) on \(J^k\) by \(J^k \times R_{k+1} \ni (z, h) \rightarrow \pi(z \circ h^{-1}) \in \mathfrak{M}^l\). The mapping \(\pi: J^{k+1} \ni z \rightarrow j^k(z) \in \mathfrak{M}^k\) is a \(R_{k+1}\)-submersion, and the set \(U^{k+1} = \pi^{-1}(w)\), as an affine subspace of \(J^{k+1}\), is a connected submanifold of \(J^{k+1}\). Consider \(w\) as an element of \(J^{k+1}\), \(w \in U^{k+1}\). The tangent space of \(U^{k+1}\) at \(w\) is the space \(\pi^{k+1}(\mathfrak{M}^{k+1})\), and by Lemma 1 the tangent space of \(V^{k+1}(w)\) at \(w\) equals \(\pi^{k+1}(\mathfrak{M}^l I(w))\). By condition (b) we have \(\mathfrak{M}^{k+1} \subset \mathfrak{M}^l I(w)\) and, hence, also, \(\pi^{k+1}(\mathfrak{M}^{k+1}) \subset \mathfrak{M}^l I(w)\). Observe that \(w \in V^{k+1}(w) \cap U^{k+1}\) and, hence, by Mather's theorem \(U^{k+1}(w)\) is contained in \(V^{k+1}(w)\). Now we can prove that \(w \in J^k\) is a sufficient jet. Take \(f \in \mathfrak{M}\) with \(f^k(f) = w\). There exists a germ \(h \in \mathfrak{M}_0\) such that \(j^{k+1}(f) = j^{k+1}(w \circ h)\), because \(j^{k+1}(f) \in U^{k+1} \subset V^{k+1}(w)\). (b) implies \(\mathfrak{M}^{k+2} \subset \mathfrak{M}^l I(w \circ h)\), which is equivalent to the \(R_k\) sufficiency of \(j^{k+1}(w \circ h) \in J^{k+1}\). Thus there exists a germ \(h' \in \mathfrak{M}_0\) such that \(f = w \circ h \circ h'\), which proves the sufficiency of \(k\)-jet \(w\).

(b) \(\Leftrightarrow\) (c) and (b) \(\Leftrightarrow\) (d) follow from Lemma 2. (c) \(\Rightarrow\) (c') is, as earlier, an easy consequence of the definition of \(A^k_0(z)\). A proof of (d) \(\Leftrightarrow\) (d') is similar to one for Theorem 1, (4) \(\iff\) (4').

Corollary 2 can be deduced from Theorem 2 by simple induction on \(s\).

Proof of Theorem 3. Let \(1 \leq l \leq k\). By Theorem 1 we have

\[
\Omega^k_l = \left\{ w \in J^k: \left(\frac{n + k}{k + 1}\right) + \text{rank } A^k_l(w) = \text{rank } A^{k+1}_l(w) \right\}.
\]

Hence \(\Omega^k_l\) is a semialgebraic subset of \(J^k, 1 \leq l \leq k\). Now put

\[
\Delta^k_{l+1} = \left\{ z \in J^{k+1}: \mathfrak{M}^{k+1} \subset \mathfrak{M}^l I(z) \right\}.
\]

The set \(\Delta^k_{l+1}\) is a semialgebraic subset of \(J^{k+1}\) because, by Lemma 2,

\[
\Delta^k_{l+1} = \left\{ z \in J^{k+1}: \left(\frac{n + k}{k + 1}\right) + \text{rank } A^k_l(z) > \text{rank } A^{k+1}_l(z) \right\}.
\]

Theorem 2 implies that \(\pi(\Delta^k_{l+1}) = J^k \setminus \Omega^k_0\). Hence by the Seidenberg-Tarski theorem [5], the set \(J^k \setminus \Omega^k_0 - \) as a linear projection of a semialgebraic set—is semialgebraic. Clearly \(\Omega^k_0\) is also a semialgebraic set and Theorem 3 is proved.

Proof of Proposition 1. Inequality \(\text{codim } \Omega^k_0 \leq \text{codim } \Omega^k\) is obvious. Let
$1 \leq l \leq k$. Fix $k \in \mathbb{N}$ and put $q = (k + 1)^n + l + 1$. Observe that for $w \in \mathcal{J}_k^q$ we have $\pi^{-1}_{q,k}(w) \cap \Omega^q_l \neq \emptyset$. If $0 \in \mathbb{R}^n$ is a regular point of w, this is trivial. In the other case, if 0 is a critical point of w, we can choose a homogeneous polynomial h of degree $k + 1$ such that $0 \in \mathbb{C}^n$ is an isolated critical point of $w + h$, where $w + h$ is the complexification of $w + h$. A theorem of Samuel [2] implies $\mathfrak{m}_{q,k}(w + h) \subseteq \mathfrak{m}_{q,k}(w) \cap \Omega^q_l$ (Theorem 1). This means that $\pi_{q,k}(\mathcal{J}(\mathcal{J}_k^q)) = \mathcal{J}_k^q$ and,\[\text{hence, codim } \Omega^q_l \leq \dim \ker \pi_{q,k}(\mathcal{J}_k^q). \]

References

4. J. Mather, Unpublished notes on right-equivalence.

Institute of Mathematics, University of Cracow, Cracow, Reymonta 4, Poland