A REMARK ON NELSON’S BEST HYPERCONTRACTIVE ESTIMATES

BARRY SIMON

Abstract. By using a combinatorial estimate we provide a new proof of Nelson’s best hypercontractive estimates from L^2 to L^4.

Let G be the differential operator

$$
-\frac{1}{2} \frac{d^2}{dx^2} + x \frac{d}{dx} \quad \text{on} \quad L^2(\mathbb{R}, \pi^{-1/2} e^{-x^2} dx).
$$

Hypercontractive estimates on e^{-tG} have played a key role in constructive quantum field theory; see e.g. [6]. In [5] Nelson proved the estimate

$$
\|e^{-tG}f\|_p \leq \|f\|_q
$$

if

$$
e^{-t} \leq \sqrt{(q-1)/(p-1)}
$$

where $\|\cdot\|_p$ is the $L^p(\mathbb{R}, \pi^{-1/2} e^{-x^2} dx)$ norm. (1) is a “best possible” estimate in the sense that if (2) fails then e^{-tG} is not even bounded from L^p to L^q. Nelson’s proof is quite complicated and the beautiful alternate proof of Gross [2] involves some computation. Our goal in this note is to give a simple proof of (1) in case $q=2$; p = even integer. This is not the first time that hypercontractive estimates have been sharper or easier for this case; see the situation for fermions [3].

Our proof proceeds by a slight strengthening of an argument of Nelson [5] who easily proves (1) with $p=4$; $q=2$ if $e^{-t} \leq \sqrt{1/4}$. Nelson’s argument extends to $p=2k$, $q=2$ if $e^{-t} \leq \sqrt{1/2k}$ (k = integer). Let $A_k(n)$ be defined as follows. Consider $2kn$ objects broken into $2k$ groups of n objects each. $A_k(n)$ is the number of ways of assigning these $2kn$ objects into kn pairs in such a way that no two objects in the same group are paired with each other. Thus e.g.

$$
A_1(n) = n!.
$$

Obviously, $A_k(n)$ is dominated by the total number of pairings without any restriction and this is $(2kn)!/(kn)!2^k n$. From this one finds that

$$
A_k(n) \leq (2k)^{kn} (A_1(n))^k.
$$

Received by the editors January 17, 1975 and, in revised form, February 25, 1975.

AMS (MOS) subject classifications (1970). Primary 81A18, 47D05; Secondary 05A05.

Key words and phrases. Hypercontractive.

1 A. Sloan Foundation Fellow; research partially supported by NSF Grant GP 39048.
(4) is the basis of the easy Nelson proof mentioned above. By mimicking Nelson’s proof, the best estimates from L^2 to L^{2k} follow from the following combinatorial result which is the main result of this note:

Theorem 1. $A_k(n) \leq (2k - 1)^k A_1(n)^k$.

Proof. We will show that

$$ A_{kn} \leq \left[\frac{(2k - 1)}{2k}\right]^{kn} \left[\frac{(2kn)}{(2kn - 2)(2kn - 4) \cdots 2}\right]. $$

The last factor in (5) is $2^{kn}(kn)!$. By the multinomial theorem $(kn)! < k^{kn}(n!)^k$ so (5) implies the estimate of the theorem. Let us give an algorithm for finding all allowed pairings and then estimate the number of choices at each stage. Write $2kn$ objects as $\alpha_1^{(1)}, \ldots, \alpha_n^{(1)}; \alpha_1^{(2)}; \ldots; \alpha_n^{(2k)}$. At each stage choose the group with the most unpaired elements left (if several groups have equal numbers left choose the one with smallest group number y in $\alpha_i^{(y)}$). In the group $\alpha_i^{(y)}$ chosen, pair the $\alpha_i^{(y)}$ with i smallest with some element in some other group. This algorithm will clearly yield each allowed pairing once. After m pairs have been chosen, $2kn - 2m$ elements remain. At least $(2kn - 2m)/2k$ of those elements lie in the group with the most unpaired elements so at the $(m + 1)$st pairing, at most $[(2k - 1)/2k][2kn - 2m]$ choices are available. This proves the bound (5).

We would also like to make a remark about the best possible nature of the hypercontractive bounds. For a semigroup e^{-tG} taking 1 into 1, there is a close connection between G having a gap in its spectrum above zero and e^{-tG} being a contraction from L^2 to L^4 for some t. Glimm [1] proved that if G has a gap and if e^{-tG} is bounded from L^2 to L^4 for some t_0, it is a contraction for sufficiently large t. Guerra, Rosen and Simon [4] proved that if e^{-tG} generates a Markov process, then e^{-tG} a contraction from L^2 to L^4 implies a mass gap for G. By “running Glimm’s proof backwards”, we can sharpen the GRS result:

Theorem 2. Let T be a reality preserving bounded operator on $L^2(M; d\mu)$; $\mu(M) = 1$ so that (a) $T1 = 1$, (b) T is a contraction from L^2 to L^4. Then, $T^*1 = 1$ and $\|T \{1\}^\perp\| \leq \sqrt[4]{1/3}$.

Proof. Let $f = \alpha 1 + g$ with $g \in \{1\}^\perp$, α real and g real valued. Then

$$ \|f\|_4^4 = (\alpha^4 + 2\alpha^2\|g\|_2^2 + \|g\|_2^4) $$

and

$$ \|Tf\|_4^4 = \alpha^4 + 4\alpha^3\langle 1, Tg \rangle + 6\alpha^2\|Tg\|_2^2 + O(\alpha). $$

By hypothesis: $\|T\|_4 \leq \|f\|_2$ so taking α large we have $\langle 1, Tg \rangle \leq 0$. This implies that $\langle 1, Tg \rangle = 0$ so that $T^*1 = \alpha 1$. Since $\langle 1, T^*1 \rangle = \langle T1, 1 \rangle = 1$, $\alpha = 1$. Since $\langle 1, Tg \rangle = 0$, taking α large we have

$$ 6\|Tg\|_2^2 \leq 2\|g\|_2^2 \quad \text{or} \quad \|Tg\|_2 < \sqrt[6]{1/3} \|g\|_2. $$

Remark. Thus, the best possible estimate from L^2 to L^4 implies that G has a gap of size 1. If a better estimate held, the gap would be bigger than 1. Since
G has a gap of precisely one, we have the best possible nature of the estimates.

It is a pleasure to thank C. Fefferman for a useful remark.

Note. After the completion of this manuscript I learned of two new proofs of the full best hypercontractive estimates, one by W. Beckner and the other by H. Brascamp and E. Lieb.

References

Departments of Mathematics and Physics, Princeton University, Princeton, New Jersey 08540