ON PURE STATES OF C*-SUBALGEBRAS

JOEL ANDERSON

In [1, 2.12.21, p. 58] the following question is raised. Let \mathcal{A} be a C*-algebra, \mathcal{B} a C*-subalgebra of \mathcal{A} and q a nonzero positive element of \mathcal{A}. Does there exist a state φ on \mathcal{B} such that the restriction of φ to \mathcal{B} is a pure state and $\varphi(q) > 0$? The question was answered in the negative in [2]. Our purpose in this note is to present another proof of this fact.

Proposition. Let \mathcal{A} be a C*-algebra and let q, a and s be elements of \mathcal{A} such that q is nonzero and positive, a is selfadjoint, and $q = as - sa$. Let \mathcal{B} be an abelian C*-subalgebra of \mathcal{A} which contains a and the identity e. If φ is a state on \mathcal{B} such that the restriction of φ to \mathcal{B} is a pure state, then $\varphi(q) = 0$.

Proof. Since φ is a pure state on the commutative C*-algebra \mathcal{B}, φ is multiplicative on \mathcal{B}. Let $\varphi(a) = \lambda$. Then by the Cauchy-Schwartz inequality

$$|\varphi(as) - \varphi(a)\varphi(s)|^2 = |\varphi((a - \lambda e)s)|^2 \leq \varphi((a - \lambda e)^2)\varphi(s*s) = 0,$$

and similarly, $\varphi(sa) = \varphi(a)\varphi(s)$. Hence, $\varphi(q) = \varphi(as - sa) = 0$.

If s is the unilateral shift on l^2 ($s(\lambda_1, \lambda_2, \ldots) = (0, \lambda_1, \lambda_2, \ldots)$), then $s*s - ss^* = q$ is the projection of l^2 onto the space of sequences of the form $(\lambda_1, 0, 0, \ldots)$. If $a = s + s^*$, then $q = as - sa$, so q, a and s satisfy the hypotheses of the proposition. Hence, we may take \mathcal{A} to be the C*-algebra generated by s and \mathcal{B} to be the C*-algebra generated by a and e.

References

Department of Mathematics, California Institute of Technology, Pasadena, California 91125

Received by the editors September 10, 1975.

AMS (MOS) subject classifications (1970). Primary 46L05.

Key words and phrases. Pure states, C*-algebras.