CHARACTERIZATIONS OF THE SPHERE
BY THE CURVATURE
OF THE SECOND FUNDAMENTAL FORM
UDO SIMON

Abstract. On an ovaloid S with Gaussian curvature \(K(I) > 0 \) in Euclidean three-space \(E^3 \) the second fundamental form defines a nondegenerate Riemannian metric with curvature \(K(II) \). R. Schneider [7] proved that the spheres in Euclidean space \(E^{n+1} \) are the only closed hypersurfaces on which the second fundamental form defines a nondegenerate Riemannian metric of constant curvature. For surfaces in \(E^3 \) we give a common generalization of Schneider’s theorem and the classical theorem of Liebmann [6] (which states that any ovaloid in \(E^3 \) with constant Gaussian curvature is a sphere).

We introduce the following notations. Let \(x: S^n \to E^{n+1} \) be an imbedding so that \(S = x(S^n) \) is an ovaloid in Euclidean \((n + 1)\)-space.

By appropriate orientation the second fundamental form \(II \) defines a Riemannian metric. Let \((u^i)\) be local coordinates and let \(\Gamma(I)_{ij}^k, K(I), \nabla (I), \nabla_I \) resp. \(\Gamma(II)_{ij}^k, K(II), \nabla (II), \nabla_{II} \) denote Christoffel symbols, Gaussian curvature, covariant differentiation and the first Beltrami operator with respect to the first fundamental form \(I \) respective to the second fundamental form \(II \). Let \(H \) be the mean curvature and

\[T^k_{ij} = \Gamma(I)_{ij}^k - \Gamma(II)_{ij}^k. \]

In the following we shall use the second fundamental tensor \(b_{ij} \) for “raising and lowering the indices”. Then ([7, p. 232]) \(T_{ijk} := T^k_{ij} b_{hk} \) is totally symmetric and for \(n = 2 \) we have

\[K(II) = H + \frac{1}{2} T_{ijk} T_{ijk} - \left(\frac{1}{8} K^2 \right) \cdot \nabla_{II} K(I), \]

which easily implies ([2, p. 7])

\[2H \left(K(II) - H \right) (H^2 - K(I)) \]

\[= \frac{1}{2} K(I) \nabla_{II} \left(H, H^2 / K(I) \right) - \frac{1}{4} \nabla_I \left(H^2 / K(I), K(I) \right). \]

The following result is a simple consequence of the Gauss-Bonnet-integralformula in case \(n = 2 \).

3. Lemma ([5, Koutroufiotis]). Let \(S \) be an ovaloid in \(E^3 \). Then each of the assumptions

\((3a) \ K(II) > \left(K(I) \right)^{1/2}, \)

Received by the editors September 18, 1974 and, in revised form, March 19, 1975.
\(^1\)I thank the referee for several remarks.
(3b) \(K(II) < (K(I))^{1/2}\) implies \(K(II) = (K(I))^{1/2}\) on \(S\).

For the following result of Koutroufiotis we will give another proof.

4. Lemma. Let \(S\) be an ovaloid \((K(I) > 0)\) in \(E^3\). Then \(K(II) = (K(I))^{1/2}\) on \(S\) implies that \(S\) is a sphere.

Proof. Define \(g: S \rightarrow \mathbb{R}\) by \(g(q) = H^2(q)/K(I)(q), \quad q \in S\). We have \(g(q) \geq 1\) for \(q \in S\) and \(g(q_0) = 1\) if and only if \(q_0\) is an umbilic. Assume \(S\) not to be a sphere. Then there exists \(\bar{q} \in S\) with \(1 < g(\bar{q}) = \max_{q \in S} g(q)\) and \((\partial g/\partial u')(\bar{q}) = 0\), so that the right-hand side of (2) vanishes in \(\bar{q}\). On the other hand \(K(II) = (K(I))^{1/2}\) implies that the left-hand side of (2) is negative in \(\bar{q}\), as \((H^2 - K(I)(\bar{q})) > 0\), which is a contradiction. So \(g \equiv 1\) on \(S\) and \(S\) is a sphere.

5. Corollary. Let \(S\) be an ovaloid.

(5.1) Each of the assumptions (3a), (3b) implies that \(S\) is a sphere [5].

(5.2) \(K(II) \geq H\) implies that \(S\) is a sphere (cf. [3, Problem (9.6.b), p. 224] for \(n = 2\)).

The following lemma is an analogue to a classical theorem of Hilbert [4, Anhang V].

6. Lemma. Let \(S\) be an ovaloid in \(E^3\). If there exists \(q_0 \in S\) where \(A''(II)\) takes its minimum and \(A'(I)\) takes its maximum, then \(S\) is a sphere.

Proof. As \(T_{\alpha k} T^{\alpha k} > 0\) and \(H > (K(I))^{1/2}\), (1) implies

\[K(II) > (K(I))^{1/2} - \frac{1}{8K^2} \nabla_{II}(K(I)).\]

As \(\nabla_{II}(K(I))(q_0) = 0\) we get, for every \(q \in S\),

\[K(II)(q) > K(II)(q_0) > (K(I)(q_0))^{1/2} > (K(I)(q))^{1/2},\]

the assertion follows from (5.1).

Theorem. Let \(S\) be an ovaloid in \(E^3\). If there exists a function \(\Phi: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) which is increasing (resp. decreasing) in both variables and strictly monotonic in at least one of its variables and if

\[\Phi(K(I)(q), K(II)(q)) = 0\]

for all \(q \in S\), then \(S\) is a sphere.

Proof. Assume \(\Phi\) to be strictly increasing in the second variable and assume that there exists \(q_0 \in S\) such that \(K(I)(q_0) = \max_{q \in S} K(I)(q)\)

but \(K(II)(q_0) > \min_{q \in S} K(II)(q) = K(II)(q_1)\). Then

\[0 = \Phi(K(I)(q_0), K(II)(q_0)) > \Phi(K(I)(q_0), K(II)(q_1)) > \Phi(K(I)(q_1), K(II)(q_1)) = 0,\]

which is a contradiction. So \(K(II)(q_0) = \min_{q \in S} K(II)(q)\) and the assertion follows from Lemma 6.
References

Department of Mathematics, Technische Universität, 1 Berlin 12, Germany