CHARACTERIZATIONS OF URYSOHN-CLOSED SPACES

LARRY L. HERRINGTON

Abstract. This paper gives characterizations of Urysohn-closed and minimal Urysohn spaces, some of which make use of nets.

1. Introduction. Our primary interest is the investigation of Urysohn-closed and minimal Urysohn spaces. Characterizations of Urysohn-closed and minimal Urysohn spaces are given in terms of special types of open filterbases [1, p. 101]. Open filterbases, of course, determine nets but not every net determines an open filterbase. We give characterizations of Urysohn-closed and minimal Urysohn spaces in terms of nets and arbitrary filterbases. These characterizations are obtained mainly through the introduction of a type of convergence for filterbases and nets that we call \(u \)-convergence.

Throughout, \(\text{cl}(A) \) will denote the closure of a set \(A \).

2. Preliminary definitions and theorems. Let \(X \) be a topological space and let \(G \) and \(H \) be open sets in \(X \) containing a point \(p \in X \). Then \(G \) and \(H \) will be called an ordered pair of open sets containing \(p \) (denoted by \((G, H) \)) if \(p \in G \subset \text{cl}(G) \subset H \).

Definition 2.1. Let \(X \) be a topological space and let \(\mathcal{F} = \{ A_\alpha : \alpha \in \Delta \} \) be a filterbase in \(X \). Then \(\mathcal{F} \) \(u \)-converges to \(x \in X \) \((\mathcal{F} \to u x)\) if for each ordered pair of open sets \((G, H) \) containing \(x \) there exists an \(A_\alpha \in \mathcal{F} \) such that \(A_\alpha \subset \text{cl}(H) \). The filterbase \(\mathcal{F} \) \(u \)-accumulates to \(x \in X \) \((\mathcal{F} \alpha u x)\) if for each ordered pair of open sets \((G, H) \) containing \(x \) and for each \(A_\alpha \in \mathcal{F} \), \(A_\alpha \cap \text{cl}(H) \neq \emptyset \).

Convergence and accumulation of filterbases in the usual sense, of course, imply \(u \)-convergence and \(u \)-accumulation, respectively. However, the converses do not hold as the next example shows.

Example 2.2. Let \(I = [0, 1] \) have as a subbase the usual open sets together with the set \(A = \{ r : 1/4 < r < 3/4 \text{ and } r \text{ is rational} \} \). Let the filterbase \(\mathcal{F} \) consist of a single element \(B = \{ x : 1/3 < x < 2/3 \text{ and } x \text{ is irrational} \} \) and let \(x = 1/2 \). The filterbase \(\mathcal{F} \) does not converge or accumulate in the usual sense to \(x \) but \(\mathcal{F} \alpha u x \).

There are a number of theorems concerning \(u \)-convergence and \(u \)-accumulation whose statements parallel those of convergence and accumulation in the usual sense. We give a sample of some of these theorems but omit their straightforward proofs.

Received by the editors October 28, 1974.

Key words and phrases. Urysohn-closed and minimal Urysohn spaces.

© American Mathematical Society 1976
Theorem 2.3. In a topological space X the following properties hold:
(a) If \mathcal{F} is a filterbase in X such that $\mathcal{F} \ u$-converges to $x \in X$, then $\mathcal{F} \ u$-accumulates to x. If X is a Urysohn space and if \mathcal{F} converges to $x \in X$, then $\mathcal{F} \ u$-accumulates at no point other than x.
(b) Let \mathcal{F}_1 and \mathcal{F}_2 be two filterbases in X where \mathcal{F}_2 is stronger than \mathcal{F}_1. Then $\mathcal{F}_1 \ u$-accumulates to $x \in X$ if $\mathcal{F}_2 \ u$-accumulates to x.
(c) A filterbase $\mathcal{F}_1 \ u$-accumulates to $x \in X$ if and only if there exists a filterbase \mathcal{F}_2 stronger than \mathcal{F}_1 such that $\mathcal{F}_2 \ u$-converges to x.
(d) A maximal filterbase \mathcal{M} in $X \ u$-accumulates to $x \in X$ if and only if $\mathcal{M} \ u$-converges to x.

Definition 2.4. Let X be a topological space and let $\mathcal{O} : D \to X$ be a net in X. Then $\mathcal{O} \ u$-converges to $x \in X$ (or $\mathcal{O} \to u x$) if for each ordered pair of open sets (G, H) containing x, there exists a $b \in D$ such that $\mathcal{O}(T_b) \subseteq \text{cl}(H)$ (where $T_b = \{c \in D : b < c\}$). The net $\mathcal{O} \ u$-accumulates to $x \in X$ (or $\mathcal{O} \cap u x$) if for each ordered pair of open sets (G, H) containing x and for every $b \in D$, $\mathcal{O}(T_b) \cap \text{cl}(H) \neq \emptyset$.

Of course, if $\mathcal{O} : D \to X$ is a net in X, the family $\mathcal{O}(\mathcal{O}) = \{\mathcal{O}(T_b) : b \in D\}$ is a filterbase in X and it is routine to verify that:
(a) $\mathcal{F}(\mathcal{O}) \to u X$ if and only if $\mathcal{O} \to u x$.
(b) $\mathcal{F}(\mathcal{O}) \cap u X$ if and only if $\mathcal{O} \cap u x$.

Conversely, every filterbase \mathcal{F} in X determines a net $\mathcal{O} : D \to X$ such that:
(a) $\mathcal{F} \to u x \in X$ if and only if $\mathcal{O} \to u x$.
(b) $\mathcal{F} \cap u x \in X$ if and only if $\mathcal{O} \cap u x$.

The construction of such a net is the same as that of [2, p. 213].

We next state a few theorems concerning u-convergence for nets.

Theorem 2.5. In a topological space X the following properties hold:
(a) If \mathcal{O} is a net in X such that $\mathcal{O} \ u$-converges to $x \in X$, then $\mathcal{O} \ u$-accumulates to x. If X is a Urysohn space and if \mathcal{O} converges to $x \in X$, then $\mathcal{O} \ u$-accumulates at no point other than x.
(b) A net $\mathcal{O} \ u$-accumulates to $x \in X$ if and only if there exists a subnet of $\mathcal{O} \ u$-converging to x.
(c) A universal net $\mathcal{O} \ u$-accumulates to $x \in X$ if and only if $\mathcal{O} \ u$-converges to x.

3. Filterbases and net characterizations of Urysohn-closed spaces. An open filterbase \mathcal{F} in X is a Urysohn filterbase if and only if for each $p \in A(\mathcal{F})$ (where $A(\mathcal{F})$ denotes the set of accumulation points of \mathcal{F}), there is an open neighborhood U of p and some $V \in \mathcal{F}$ such that $\text{cl}(U) \cap \text{cl}(V) = \emptyset$ [3]. An open cover \mathcal{K} of a space X is a Urysohn open cover if there exists an open cover \mathcal{V} of X with the property that for each $V \in \mathcal{V}$, there is a $U \in \mathcal{K}$ such that $\text{cl}(V) \subseteq U$. A Urysohn space X is Urysohn-closed provided X is a closed set in every Urysohn space in which it can be embedded [1].

Lemma 3.1. Let $\mathcal{F} = \{O_\alpha : \alpha \in \Delta\}$ be an open Urysohn filterbase on X. Then $A(\mathcal{F}) = A_u(\mathcal{F})$ (where $A_u(\mathcal{F})$ denotes the set of u-accumulation points of \mathcal{F}).

Proof. Clearly we only need to show that $A_u(\mathcal{F}) \subseteq A(\mathcal{F})$. Suppose $p \notin A(\mathcal{F})$. Then there exists an open set U containing p and some $O_\alpha \in \mathcal{F}$ such
that $\text{cl}(U) \cap \text{cl}(O_a) = \emptyset$. The open sets $V = X - \text{cl}(O_a)$ and U form an ordered pair of open sets, (U, V), containing p and have the property that $O_a \cap \text{cl}(V) = \emptyset$. Consequently, $p \not\in A_u(\mathcal{F})$. Therefore, we conclude that $A(\mathcal{F}) = A_u(\mathcal{F})$.

Theorem 4.1 of [1, p. 101] gives several characterizations of Urysohn-closed spaces. We offer the following characterizations.

Theorem 3.2. Let X be a Urysohn space. Then the following are equivalent:

(a) X is Urysohn-closed.
(b) Each filterbase \mathcal{F} in X u-accumulates to some point $x \in X$.
(c) Each maximal filterbase \mathcal{M} in X u-converges to some point $x \in X$.

Proof. (a) implies (b). Suppose there exists a filterbase $\mathcal{F} = \{A_a : a \in \Delta\}$ in X that does not u-accumulate in X. Then for each $x \in X$ there exists an ordered pair of open sets $(U(x), V(x))$ containing x and some $A_a(x) \in \mathcal{F}$ such that $A_a(x) \cap \text{cl}(V(x)) = \emptyset$. Now $\{V(x) : x \in X\}$ is a Urysohn open cover of X. Thus by Theorem 4.1 of [1, p. 101], there exists a finite subcollection $\{V(x_i) : i = 1, 2, 3, \ldots, n\}$ such that $\bigcup_{i=1}^{n} \text{cl}(V(x_i)) = X$. Since \mathcal{F} is a filterbase, there exists an $A_{a_0} \subseteq \mathcal{F}$ such that $A_{a_0} \subseteq \bigcap_{i=1}^{n} A_{a(x_i)}$ and $A_{a_0} \neq \emptyset$ implies that for some j, $1 \leq j \leq n$, $A_{a_0} \cap \text{cl}(V(x_j)) \neq \emptyset$. Therefore $A_{a(x_j)} \cap \text{cl}(V(x_j)) \neq \emptyset$ which is a contradiction.

(b) implies (a). Let $\mathcal{F} = \{O_a : a \in \Delta\}$ be an open Urysohn filterbase on X. By Lemma 3.1 and hypothesis (b) we have that $A_u(\mathcal{F}) = A(\mathcal{F}) \neq \emptyset$. Therefore X is Urysohn-closed according to Theorem 4.1 of [1, p. 101].

(b) implies (c). Let \mathcal{M} be a maximal filterbase in X. Then \mathcal{M} u-accumulates to some point in X by (b) and hence u-converges to that point by Theorem 2.3(d).

(c) implies (b). Let \mathcal{F} be a filterbase in X. Then there exists a maximal filterbase \mathcal{M} in X which is stronger than \mathcal{F}. Since \mathcal{M} u-converges to some point $x \in X$, \mathcal{F} u-accumulates to x according to Theorem 2.3.

Our discussion in the previous section showed that filterbases and nets are "equivalent" in the sense of u-convergence and u-accumulation. Thus we can now characterize Urysohn-closed spaces in terms of nets.

Theorem 3.3. In a Urysohn space X the following are equivalent:

(a) X is Urysohn-closed.
(b) Each net in X has a u-accumulation point.
(c) Each universal net u-converges.

Remark 3.4. For each topological space (X, τ) there is a corresponding topological space (X, τ_*) called the semiregular space associated with (X, τ) [1, p. 96]. The topology τ_* is generated by the regular open sets in (X, τ). For each open set U in (X, τ), $\text{cl}(U) = \text{cl}_*(U)$ (where $\text{cl}_*(U)$ denotes the closure of U in (X, τ_*)). Consequently, it follows that a space (X, τ) is Urysohn if and only if (X, τ_*) is Urysohn. Also, it is easy to see that a filterbase \mathcal{F} on X u-accumulates to x in (X, τ) if and only if \mathcal{F} u-accumulates to x in (X, τ_*). With this in consideration we give the following theorem.

Theorem 3.5. A space (X, τ) is Urysohn-closed if and only if (X, τ_*) is Urysohn-closed.

Proof. The result follows from Theorem 3.2 and Remark 3.4.
Theorem 4.2 of [1, p. 101] characterizes minimal Urysohn spaces in terms of open Urysohn filterbases. In terms of arbitrary filterbases and \(u \)-convergence, we give the following characterization of minimal Urysohn spaces.

Theorem 3.6. Let \((X, \tau_0) \) be a Urysohn space. Then \(X \) is minimal Urysohn if and only if each filterbase in \(X \) possessing at most one \(u \)-accumulation point is convergent.

Proof. Suppose the condition is given and let \(\mathcal{F} \) be an open Urysohn filterbase on \(X \) possessing at most one accumulation point. By Lemma 3.1, \(\mathcal{F} \) possesses at most one \(u \)-accumulation point. Consequently, by hypothesis, \(\mathcal{F} \) converges. This shows that \(X \) is minimal Urysohn according to Theorem 4.2 of [1, p. 101].

Conversely, assume that \(X \) is a minimal Urysohn space and suppose that \(\mathcal{F}_0 = \{ A_\alpha : \alpha \in \Delta \} \) is a filterbase on \(X \) possessing at most one \(u \)-accumulation point. Let \(\mathcal{F} \) be the filter generated by the filterbase \(\mathcal{F}_0 \). Since \(X \) is Urysohn-closed (see Theorem 4.3(a) of [1, p. 101]), \(\mathcal{F}_0 \) has a unique \(u \)-accumulation point \(x \in X \). It follows that the collection of open sets \(\tau_1 = \{ U \in \tau_0 : U \subset X - \{ x \} \} \cup \{ V \in \tau_0 : V \in \mathcal{F} \} \) forms a Urysohn topology on \(X \) with the property that \(\tau_1 \subset \tau_0 \). Suppose there is an open set \(G(x) \in \tau_0 \) containing \(x \) such that for each \(A_\alpha \in \mathcal{F}_0, A_\alpha \not\subset G(x) \). Then for each open \(U(x) \in \tau_1 \) containing \(x, U(x) \not\subset G(x) \) which shows that \(\tau_1 \neq \tau_0 \). Therefore \((X, \tau_0) \) is not minimal Urysohn, which is a contradiction. We conclude that \(\mathcal{F}_0 \) converges to \(x \).

Corollary 3.7. Let \(X \) be a Urysohn space. Then \(X \) is minimal Urysohn if and only if each net in \(X \) possessing at most one \(u \)-accumulation point is convergent.

4. First countable Urysohn spaces.

A space \((X, \tau) \) is called first countable and minimal Urysohn if \(\tau \) is first countable and Urysohn, and if no first countable topology on \(X \) which is strictly weaker than \(\tau \) is Urysohn. \((X, \tau) \) is first countable and Urysohn-closed if \(\tau \) is first countable and Urysohn, and \((X, \tau) \) is a closed subspace of every first countable Urysohn space in which it can be embedded.

Theorem 4.1. A first countable Urysohn space \(X \) is first countable and Urysohn-closed if each countable filterbase on \(X \) \(u \)-accumulates to some point \(p \in X \).

Proof. Let \(\mathcal{F} \) be a countable open Urysohn filterbase on \(X \). By Lemma 3.1, \(A(\mathcal{F}) = A_u(\mathcal{F}) \neq \emptyset \) which implies that \(X \) is first countable and Urysohn-closed according to Theorem 6.3 of [1, p. 107].

Theorem 4.2. A first countable Urysohn space \(X \) is first countable and Urysohn-closed if each sequence in \(X \) \(u \)-accumulates to some point \(p \in X \).

Proof. Suppose that \(X \) is not Urysohn-closed. Then there exists a first countable Urysohn space \(Y \) and a homeomorphism \(h : X \to h(X) \subset Y \) such that \(h(X) \) is not closed in \(Y \). Thus there exists a point \(p \in Y - h(X) \) (where \(p \in \text{cl}(h(X)) \)) and a sequence \(f : N \to h(X) \), in \(h(X) \) converging to \(p \). Since
$h(X)$ is homeomorphic to X, the sequence f u-accumulates to some point $z \in h(X)$. Therefore $z = p$ according to Theorem 2.5(a), which is a contradiction.

We say that a point $p \in X$ is a u-cluster point of $K \subseteq X$ if for every ordered pair of open sets (G, H) containing p, $\text{cl}(H) \cap (K - \{p\}) \neq \emptyset$. We note that in a Urysohn space X, a point $p \in X$ is a u-cluster point of $K \subseteq X$ if and only if for each ordered pair of open sets (G, H) containing p, the closure of H contains infinitely many points of K.

Lemma 4.3. In a topological space X the following are equivalent:

(a) Every countably infinite subset of Y has at least one u-cluster point.

(b) Every sequence in X has a u-accumulation point.

Theorem 4.4. A first countable Urysohn space X is first countable and Urysohn-closed if every countably infinite subset of Y has at least one u-cluster point.

Proof. The result follows from Theorem 4.2 and Lemma 4.3.

Theorem 6.3 of [1, p. 107] shows that a first countable Urysohn space X is first countable and minimal Urysohn if every countable open Urysohn filterbase on X with a unique accumulation point is convergent. We show (after Lemma 4.5) that a space X is first countable and minimal Urysohn if each sequence in X with a unique u-accumulation point is convergent.

Lemma 4.5. If a Urysohn space X has the property that every sequence in X with a unique u-accumulation point is convergent, then every sequence in X has a u-accumulation point.

Proof. Suppose (x_n) is a sequence in X with no u-accumulation point. Fix $p \in X$ and define a sequence, (z_n), by $z_n = p$ if n is odd and $z_n = x_{n/2}$ if n is even. It is clear that p is the unique u-accumulation point of (z_n) and that (z_n) does not converge to p.

Theorem 4.6. A first countable Urysohn space (X, τ) is first countable and minimal Urysohn if every sequence in X with a unique u-accumulation point is convergent.

Proof. Suppose that $h: (X, \tau) \to (Y, \sigma)$ is a bijective continuous mapping onto a first countable Urysohn space (Y, σ). We need to show that h^{-1} is continuous. Let (y_n) be a sequence in Y converging to $y \in Y$. The continuity of h shows that the sequence, $(h^{-1}(y_n))$, has the unique u-accumulation point $h^{-1}(y)$. By hypothesis, $(h^{-1}(y_n))$ converges to $h^{-1}(y)$ showing that h^{-1} is continuous.

References

