Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


The $ \overline \mu $-invariants for groups

Author: M. A. Gutiérrez
Journal: Proc. Amer. Math. Soc. 55 (1976), 293-298
MSC: Primary 16A26; Secondary 55A25
MathSciNet review: 0422328
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a presentation $ ({\text{P)}}$ for a group $ G$, the cobar differentials $ {d^r}:E_{0,1}^r \to E_{ - r,r}^r$ are invariants of $ ({\text{P)}}$. These invariants can be interpreted to be the Massey coproducts of $ {H_{\ast}}(G)$, and, if $ ({\text{P)}}$ is the Wirtinger presentation of a link group, they coincide with the $ \overline \mu $-invariants of Milnor.

References [Enhancements On Off] (What's this?)

  • [1] F. Bachman and L. Grunenfelder, The periodicity in the graded ring associated with an integral grouping (to appear).
  • [2] Ralph H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547–560. MR 0053938 (14,843d)
  • [3] M. Gutierrez, The cobar construction and applications to groups (to appear).
  • [4] Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1966. MR 0207802 (34 #7617)
  • [5] John Milnor, Isotopy of links. Algebraic geometry and topology, A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 280–306. MR 0092150 (19,1070c)
  • [6] I. B. S. Passi, Polynomial maps on groups, J. Algebra 9 (1968), 121–151. MR 0231915 (38 #241)
  • [7] J. Stallings, The cobar construction and the fundamental ideal, Lecture given at Fox Colloquium in Fine Hall, March, 1973.
  • [8] H. F. Trotter, Homology of group systems with applications to knot theory, Ann. of Math. (2) 76 (1962), 464–498. MR 0143201 (26 #761)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A26, 55A25

Retrieve articles in all journals with MSC: 16A26, 55A25

Additional Information

PII: S 0002-9939(1976)0422328-8
Keywords: Cobar construction, Fox derivative, $ \bar \mu $ - invariants
Article copyright: © Copyright 1976 American Mathematical Society