Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On large cyclic subgroups of finite groups


Author: Edward A. Bertram
Journal: Proc. Amer. Math. Soc. 56 (1976), 63-66
DOI: https://doi.org/10.1090/S0002-9939-1976-0399019-5
MathSciNet review: 0399019
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: It is known that for each (composite) $ n$ every group of order $ n$ contains a proper subgroup of order greater than $ {n^{1/3}}$. We prove that given $ 0 < \delta < 1$, for almost all $ n \leqslant x$, as $ x \to \infty $, every group $ G$ of order $ n$ contains a characteristic cyclic subgroup of square-free order $ > {n^{1 - 1/{{(\log n)}^{1 - \delta }}}}$, and provide an upper bound to the number of exceptional $ n$. This leads immediately to a like density result for a lower bound to the number of conjugacy classes in $ G$.


References [Enhancements On Off] (What's this?)

  • [1] E. A. Bertram, A density theorem on the number of conjugacy classes infinite groups, Pacific J. Math. 55 (1974), 329-333. MR 0382199 (52:3087)
  • [2] R. Brauer and K. A. Fowler, On groups of even order, Ann. of Math. (2) 62 (1955), 565-583. MR 17, 580. MR 0074414 (17:580e)
  • [3] L. Dornhoff and E. L. Spitznagel, Jr., Density of finite simple group orders, Math. Z. 106 (1968), 175-177. MR 38 #1162. MR 0232839 (38:1162)
  • [4] P. Erdös, On the scarcity of simple groups, Science and Human Progress, Professor D. D. Kosambi Commemoration Volume, 1974.
  • [5] P. Erdös and P. Turán, On some problems of a statistical group-theory. IV, Acta. Math. Acad. Sci. Hungar. 19 (1968), 413-435. MR 38 #1156. MR 0232833 (38:1156)
  • [6] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. MR 29 #3538. MR 0166261 (29:3538)
  • [7] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed., Oxford Univ. Press, London, 1960.
  • [8] M. Newman, A bound for the number of conjugacy classes in a group, J. London Math. Soc. 43 (1968), 108-110. MR 37 #1461. MR 0225870 (37:1461)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0399019-5
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society