On large cyclic subgroups of finite groups

Author:
Edward A. Bertram

Journal:
Proc. Amer. Math. Soc. **56** (1976), 63-66

DOI:
https://doi.org/10.1090/S0002-9939-1976-0399019-5

MathSciNet review:
0399019

Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: It is known that for each (composite) every group of order contains a proper subgroup of order greater than . We prove that given , for almost all , as , every group of order contains a characteristic cyclic subgroup of square-free order , and provide an upper bound to the number of exceptional . This leads immediately to a like density result for a lower bound to the number of conjugacy classes in .

**[1]**E. A. Bertram,*A density theorem on the number of conjugacy classes infinite groups*, Pacific J. Math.**55**(1974), 329-333. MR**0382199 (52:3087)****[2]**R. Brauer and K. A. Fowler,*On groups of even order*, Ann. of Math. (2)**62**(1955), 565-583. MR**17**, 580. MR**0074414 (17:580e)****[3]**L. Dornhoff and E. L. Spitznagel, Jr.,*Density of finite simple group orders*, Math. Z.**106**(1968), 175-177. MR**38**#1162. MR**0232839 (38:1162)****[4]**P. Erdös,*On the scarcity of simple groups*, Science and Human Progress, Professor D. D. Kosambi Commemoration Volume, 1974.**[5]**P. Erdös and P. Turán,*On some problems of a statistical group-theory*. IV, Acta. Math. Acad. Sci. Hungar.**19**(1968), 413-435. MR**38**#1156. MR**0232833 (38:1156)****[6]**W. Feit and J. G. Thompson,*Solvability of groups of odd order*, Pacific J. Math.**13**(1963), 775-1029. MR**29**#3538. MR**0166261 (29:3538)****[7]**G. H. Hardy and E. M. Wright,*An introduction to the theory of numbers*, 4th ed., Oxford Univ. Press, London, 1960.**[8]**M. Newman,*A bound for the number of conjugacy classes in a group*, J. London Math. Soc.**43**(1968), 108-110. MR**37**#1461. MR**0225870 (37:1461)**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0399019-5

Article copyright:
© Copyright 1976
American Mathematical Society