QUASI-UNMIXEDNESS AND INTEGRAL CLOSURE OF REES RINGS

PETER G. SAWTELLE

Abstract. For certain Rees rings \mathfrak{R} of a local domain R, the quasi-unmixedness of R is characterized in terms of a certain transform of \mathfrak{R} being contained in the integral closure of \mathfrak{R}.

1. Introduction. In this paper, a ring shall be a commutative ring with identity. The terminology is basically that of [2] and [12].

Relations between quasi-unmixedness and integral extensions are well known (e.g., [1], [5] and [7]). Also, the study of properties of a ring R via transition to a Rees ring $\mathfrak{R} = \mathfrak{A}(R, A)$ of R (conditions on the ideal A depending on the particular discussion) has often been useful. In particular, characterizations of the quasi-unmixedness of R are given in [10] in terms of localizations of \mathfrak{R} containing R as a quasi-subspace. The \mathfrak{A}-algebra $\mathfrak{T} = \mathfrak{T}(u \mathfrak{R})$ (Definition 1) is used in [8] to characterize unmixed local domains. Here, equivalences to the quasi-unmixedness of R are given in terms of \mathfrak{T} being contained in the integral closure of \mathfrak{R} (Theorem 2).

2. Preliminary concepts. Let $B = (b_1, \ldots, b_k)R$ be an ideal in a Noetherian ring R. Let t be an indeterminant, and let $u = 1/t$. The Rees ring $\mathfrak{R} = \mathfrak{R}(R, B)$ of R with respect to B is the ring $\mathfrak{R} = R[u, tb_1, \ldots, tb_k]$. \mathfrak{R} is a graded Noetherian subring of $R[u, t]$. If (R, M) is a local ring, then $\mathfrak{R}_M = (M, u, tb_1, \ldots, tb_k)$ is the unique maximal homogeneous ideal of \mathfrak{R}. Similar to [12, Theorem 11, p. 157], \mathfrak{R}_M is a graded subring of $K[u, t]$, where K is the total quotient ring of R. (Throughout, S' will denote the integral closure of ring S.)

For an ideal B in a ring R, the integral closure of B in R, denoted B_a, is the set of all elements in R satisfying an equation of the form $x^n + b_1 x^{n-1} + \cdots + b_n = 0$, where $b_i \in B^i$, $i = 1, \ldots, n$. It is known [4, p. 523] that B_a is an ideal in R. In particular, if $B = bR$ is a regular principal ideal, then $(bR)_a = \{r \in R; r/b \in R'\} = bR' \cap R$ [6, Lemma 1].

Definition 1. Let b be a regular nonunit in a ring R. Define $\mathfrak{T}(bR) = \{ck/bk; ck \in (b^k R)^{(1)}$, for all large $k\}$, where $(b^k R)^{(1)}$ is the set of elements of R that are in each height one primary component of $b^k R$.

Remark. The following are shown in [11].

(1) $\mathfrak{T}(bR)$ is contained in R' if and only if each height one prime divisor of

Received by the editors July 16, 1973.

Key words and phrases. Local ring, quasi-unmixed, integral closure, Rees ring.

1 This paper contains part of the author's doctoral dissertation written at the University of California at Riverside under the direction of Professor Louis J. Ratliff, Jr.

© American Mathematical Society 1976
bR' contracts to a height one prime (divisor of bR) in R.

(2) $b^n \mathfrak{p}(bR)$ is a finite intersection of height one primary ideals. Also $b^n \mathfrak{p}(bR) \cap R = (b^n R)^{(1)}$.

(3) Define $R^{(1)} = \cap \{R_P; P$ is a height one prime divisor of a principal ideal generated by a nonzero divisor in $R\}$, where (P) denotes the set of regular elements in $R - P$. Then $\mathfrak{p}(bR) = R[1/b] \cap R^{(1)}$.

3. Characterizations of quasi-unmixed local domains. Several preliminary results on completions are given to show that the condition $\mathfrak{p} \subseteq \mathfrak{p}'$ is equivalent to a similar condition for the completion R^* of R (Corollary 1). This is used to give equivalences to the quasi-unmixedness of a local domain (Theorem 2).

Lemma 1. Let B be an M-primary ideal of a local ring (R, M). Let $\mathfrak{p} = \mathfrak{p}(R, B)$. Let p be a prime ideal of \mathfrak{p}, with $u\mathfrak{p} \subseteq p$. Then $(M, u)\mathfrak{p} \subseteq p$, and so all prime ideals containing $u\mathfrak{p}$ lie over M.

Proof. Since u is in p, $B = u\mathfrak{p} \cap R \subseteq p \cap R$. But B is M-primary, so $M \subseteq p \cap R$, i.e., $M = p \cap R$. Q.E.D.

Lemma 2. Let \mathfrak{p} be as in Lemma 1 and $S = \mathfrak{p}(R, B^*)$. Let \mathfrak{m} (resp., \mathfrak{m}') be the maximal homogeneous ideal of \mathfrak{p} (resp., S), and let \mathfrak{m}' (resp., S^*) be the completion of \mathfrak{m} (resp., S) with respect to the \mathfrak{m} (resp., \mathfrak{m}')-adic topology. Then $\mathfrak{m}' = S^*$ is the completion $R_{\mathfrak{m}}^* = (S_{\mathfrak{m}'})^*$ of $R_{\mathfrak{m}}$ and $S_{\mathfrak{m}'}$.

Proof. $R_{\mathfrak{m}}$ is a dense subspace of $S_{\mathfrak{m}}$ [8, Lemma 3.2] and S^* (resp., S^*) is the natural completion of $R_{\mathfrak{m}}$ (resp., $S_{\mathfrak{m}}$) [3, Theorem 32, p. 434]. Q.E.D.

Lemma 3. Let R, R^*, B, \mathfrak{p} and S be as in Lemma 2. Also, assume that B is generated by a system of parameters. Let $\mathfrak{p} = \mathfrak{p}(wR)$ and $\mathfrak{m}^* = \mathfrak{m}(wS)$. Then $N = (M, u)\mathfrak{p}((M, u)) \cap \mathfrak{p}$ (resp., $N^* = (M^*, u)\mathfrak{p}((M^*, u)) \cap \mathfrak{m}'$) is the only prime divisor of \mathfrak{p}^* (resp., \mathfrak{m}^*).

Proof. By [8, Remark 3.10(ii)], $(M, u)\mathfrak{p}$ is the only height one prime divisor of $u\mathfrak{p}$. By the one-to-one correspondence (and denseness) in [8, Lemma 3.2], $(M^*, u)\mathfrak{m}^* = (M, u)\mathfrak{m}^*$ is the only height one prime divisor of $u\mathfrak{m}^*$, and by the one-to-one correspondence in [11, Lemma 2(9)], N (resp., N^*) is the only height one prime divisor of $w\mathfrak{p}$ (resp., $w\mathfrak{m}^*$). By Remark (2), this ideal has no imbedded prime divisors. Q.E.D.

Theorem 1. With the notation of Lemma 2, let $p \subseteq P$ be an inclusion of prime ideals in \mathfrak{p} with $u \in p$. Then the following statements hold:

(1) \mathfrak{p}/p is a locally unmixed, pseudo-geometric domain [2, p. 131].

(2) $p\mathfrak{p}^*$ is a semiprime, unmixed ideal in the completion R^*_p of R_p.

(3) In the completion R^*_p of R_p, $p\mathfrak{p}^*$ has pure height equal to height p and has pure depth equal to depth $p\mathfrak{p}^*_p$.

(4) $p\mathfrak{p}^* = pS^*$ has pure height equal to height p, where p is contained in the maximal homogeneous ideal of \mathfrak{p}.

Proof. Since $p \subseteq R = (M, u)(R/M)(u^*, tB)^u$, where X^u denotes X modulo p. Thus \mathfrak{p}/p is finitely generated as a ring over the field
QUASI-UNMIXEDNESS AND INTEGRAL CLOSURE OF REES RINGS

R/M, and so is locally unmixed [2, (34.9)], and pseudo-geometric [2, (36.5)].

This shows (1). By localizing to R_p, (2) follows from [2, (36.4)] and (1).

For (3), since pR_p is an unmixed ideal (by (2)), it has pure depth equal to depth $pR_p = \text{depth} pR_p$. Since pR_p is semiprime, that it has pure height equal to height p follows from [2, (22.9)]. (4) is a special case of (3) since $\gamma^* = \gamma = S^*$ by Lemma 2. Q.E.D.

Corollary 1. Let the notation be as in Lemma 2. Then $\gamma(u\gamma) \subseteq R'$ if and only if $\gamma(uS) \subseteq S'$.

Proof. Since $(u^n\gamma)_a = u^n\gamma' \cap \gamma$ and γ' and γ are graded subrings of $K[u, t]$, it follows that $(u^n\gamma)_a$ is a homogeneous ideal in γ. Therefore, every prime divisor of $(u^n\gamma)_a$, for $n \geq 1$, and every prime divisor of the homogeneous ideal $u\gamma$ is contained in the maximal homogeneous ideal \mathfrak{m} of γ. By [11, Lemma 4(2)], $\gamma(u\gamma_{\mathfrak{m}}) \subseteq \gamma_{\mathfrak{m}}$ if and only if $\gamma(u\gamma) \subseteq \gamma'$. Now, let P be a height one prime divisor of $u\gamma_{\mathfrak{m}}$, and $p = P \cap \gamma$. Then $P\gamma_{\mathfrak{m}} = P\gamma^*$ has pure height one (Theorem 1(4)). Therefore, by [11, Corollary 2], $\gamma(u\gamma_{\mathfrak{m}}) \subseteq \gamma_{\mathfrak{m}}$ if and only if $\gamma(u\gamma_{\mathfrak{m}}) \subseteq \gamma_{\mathfrak{m}}^*$. But $\gamma_{\mathfrak{m}}^* = (\gamma_{\mathfrak{m}})^*$ so the last inclusion is equivalent to $\gamma(u\gamma_{\mathfrak{m}})^* \subseteq (\gamma_{\mathfrak{m}})^*$. As above, this is equivalent to $\gamma(u\gamma_{\mathfrak{m}}) \subseteq (\gamma_{\mathfrak{m}}^*)'$, which, again as above, is equivalent to $\gamma(u\gamma) \subseteq S'$. Q.E.D.

Lemma 4. Let b be a regular nonunit in a Noetherian ring R and q a minimal prime divisor of zero in R'. Then there exists a height one prime divisor P of bR' that contains q.

Proof. In R', let $Z = \text{rad} (0) = \bigcap_{i=1}^n q_i (q_1 = q)$. Since $Z \subseteq bR'$ [9, Lemma 2.4], we may pass to $R'/Z = \overline{R}$. \overline{R} is the direct sum of Krull domains $\bigoplus_{i=1}^n R'/q_i = \bigoplus_{i=1}^n \overline{R}e_i$, where the e_i are the associated orthogonal idempotents. A height one prime divisor p_1 of be_1 in $\overline{R}e_1$ gives rise to the desired P. Q.E.D.

Theorem 2 (cf. [8, Theorem 5.17]). Let (R, M) be a local domain of altitude $n \geq 1$. Then the following statements are equivalent:

1. R is quasi-unmixed.

2. For every finitely generated domain A over R, and for each multiplicatively closed subset S of A, $(A_S)^{(1)} \subseteq A_S'$.

3. For every ideal B in R, $\gamma(u\gamma) \subseteq \gamma'$, where $\gamma = \gamma(R, B)$.

4. There exists an M-primary ideal B in R that is generated by a system of parameters such that $\gamma(u\gamma) \subseteq \gamma'$, where $\gamma = \gamma(R, B)$.

Proof. (1 \Rightarrow 2). By [11, Lemma 1(3) and (5)], it is sufficient to show $A^{(1)} \subseteq A'$. By [5, Corollary 2.5], A is locally quasi-unmixed. Then, by [7, Theorem 3.8], each height one prime ideal in A' contracts to a height one prime in A. Thus, by [8, Corollary 5.7], $A^{(1)} \subseteq A'$.

(2 \Rightarrow 3). Since γ is a finite extension of R, $\gamma^{(1)} \subseteq \gamma'$, by hypothesis. And, $\gamma(u\gamma) \subseteq \gamma^{(1)}$.

(3 \Rightarrow 4) is obvious.

(4 \Rightarrow 1). Let B be an M-primary ideal of R generated by a system of parameters. Let $\gamma = \gamma'$, where $\gamma = \gamma(R, B)$ and $\gamma = \gamma(u\gamma)$. By Corollary 1, $\gamma^* \subseteq S'$, where $S = \gamma(R^*, BR^*)$ and $\gamma^* = \gamma(uS)$ (R^* is the completion of...
R). Let q be a minimal prime divisor of zero in S. Let q' be the minimal prime divisor of zero in S' that lies over q (S and S' have the same total quotient ring). By Lemma 4, there exists a height one prime divisor p' of uS' that contains q'. By Remark 1, $p' \cap S = p$ is a height one prime divisor of uS. Hence, $q \subseteq p = (M^*, u)S$ (Lemma 3). Since q was an arbitrary minimal prime divisor of zero in S, R is quasi-unmixed [10, Corollary 9]. Q.E.D.

By combining Theorem 2 and the Remark, further characterizations of the quasi-unmixedness of R can be obtained.

Bibliography

Department of Mathematics, University of Missouri, Rolla, Missouri 65401