Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Perturbations of limit-circle expressions


Author: Thomas T. Read
Journal: Proc. Amer. Math. Soc. 56 (1976), 108-110
DOI: https://doi.org/10.1090/S0002-9939-1976-0399560-5
MathSciNet review: 0399560
Full-text PDF

Abstract | References | Additional Information

Abstract: It is shown that for any limit-circle expression $ L(y) = \Sigma_{j = 0}^n {{p_j}{y^{(j)}}} $, any sequence of disjoint intervals $ \{ [{a_k},{b_k}]\} _{k = 1}^\infty $ such that $ {a_k} \to \infty $ as $ k \to \infty $, and any $ i \leqslant n - 1$, there is an expression $ M(y) = \Sigma_{j = 0}^n {{q_j}{y^{(j)}}} $ such that $ {q_i} = {p_i}$ except on $ \cup ({a_k},{b_k}),{q_j} = {p_j}$ for all $ j \ne i$, and such that $ M$ is not limit-circle.


References [Enhancements On Off] (What's this?)

  • [1] M. S. P. Eastham and M. L. Thompson, On the limit-point limit-circle classification of second order ordinary differential equations, Quart. J. Math. Oxford Ser. (2) 24 (1973), 531-535. MR 0417481 (54:5531)
  • [2] R. S. Ismagilov, On the self-adjointness of the Sturm-Liouville operator, Uspehi Mat. Nauk 18 (1963), no. 5 (113), 161-166. (Russian) MR 27 #4979. MR 0155037 (27:4979)
  • [3] I. Knowles, Note on a limit-point criterion, Proc. Amer. Math. Soc. 41 (1973), 117-119. MR 47 #8964. MR 0320425 (47:8964)
  • [4] A. Zettl, Formally self-adjoint quasi-differential operators, Rocky Mountain J. Math. 5 (1975), 453-474. MR 0379976 (52:880)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0399560-5
Keywords: $ n$th order ordinary differential expression, Weyl theory, limit-circle condition
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society