The existence of conjugate points for selfadjoint differential equations of even order

Author:
Roger T. Lewis

Journal:
Proc. Amer. Math. Soc. **56** (1976), 162-166

DOI:
https://doi.org/10.1090/S0002-9939-1976-0399576-9

MathSciNet review:
0399576

Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: This paper presents sufficient conditions on the coefficents of which insure that has conjugate points for all . The main theorem implies that has conjugate points for all when for some with no sign restrictions on .

**[1]**C. D. Ahlbrandt,*Disconjugacy criteria for self-adjoint differential systems*, J. Differential Equations**6**(1969), 271-295. MR**39**#5855. MR**0244541 (39:5855)****[2]**J. H. Barrett,*Oscillation theory of ordinary linear differential equations*, Advances in Math.**3**(1969), 415-509. MR**41**#2113. MR**0257462 (41:2113)****[3]**J. S. Bradley,*Conditions for the existence of conjugate points for a fourth order linear differential equation*, SIAM J. Appl. Math.**17**(1969), 984-991. MR**40**#5970. MR**0252753 (40:5970)****[4]**W. A. Coppel,*Disconjugacy*, Lecture Notes in Math., vol. 220, Springer-Verlag, New York, 1971. MR**0460785 (57:778)****[5]**I. M. Glazman,*Direct methods of qualitative spectral analysis of singular differential operators*, Fizmatgiz, Moscow, 1963; English transl., Israel Program for Scientific Translations, Jerusalem, 1965; Davey, New York, 1966. MR**32**#2938; #8210. MR**0190800 (32:8210)****[6]**E. Hille,*Non-oscillation theorems*, Trans. Amer. Math. Soc.**64**(1948), 234-252. MR**10**, 376. MR**0027925 (10:376c)****[7]**D. B. Hinton,*A criterion for oscillations in differential equations of order*, Proc. Amer. Math. Soc.**19**(1968), 511-518. MR**37**#1701. MR**0226111 (37:1701)****[8]**K. Kreith,*Oscillation theory*, Lecture Notes in Math., vol. 324, Springer-Verlag, New York, 1973.**[9]**W. Leighton and Z. Nehari,*On the oscillation of solutions of self-adjoint linear differential equations of the fourth order*, Trans. Amer. Math. Soc.**89**(1958), 325-377. MR**21**#1429. MR**0102639 (21:1429)****[10]**R. T. Lewis,*Oscillation and nonoscillation criteria for some self-adjoint even order linear differential operators*, Pacific J. Math.**51**(1974), 221-234. MR**0350112 (50:2605)****[11]**-,*The oscillation of fourth order linear differential operators*, Canad. J. Math.**27**(1975), 138-145. MR**0361279 (50:13724)****[12]**R. A. Moore,*The behavior of solutions of a linear differential equation of second order*, Pacific J. Math.**5**(1955), 125-145. MR**16**, 925. MR**0068690 (16:925b)****[13]**W. T. Reid,*Riccati matrix differential equations and non-oscillation criteria for associated linear differential systems*, Pacific J. Math.**13**(1963), 665-685. MR**27**#4991. MR**0155049 (27:4991)****[14]**-,*Oscillation criteria for self-adjoint differential systems*, Trans. Amer. Math. Soc.**101**(1961), 91-106. MR**24**#A3349. MR**0133518 (24:A3349)****[15]**J. R. Ridenhour,*On -zeros of solutions of linear differential equations of order*, Proc. Amer. Math. Soc.**44**(1974), 135-140. MR**48**#8967. MR**0330630 (48:8967)****[16]**C. A. Swanson,*Comparison and oscillation theory of linear differential equations*, Academic Press, New York, 1968. MR**0463570 (57:3515)**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0399576-9

Keywords:
Selfadjoint linear differential equations of even order,
oscillation,
conjugate points

Article copyright:
© Copyright 1976
American Mathematical Society