POLYNOMIAL PELL’S EQUATIONS

MELVYN B. NATHANSON

Abstract. The polynomial Pell’s equation is $P^2 - (x^2 + d)Q^2 = 1$, where d is an integer and the solutions P, Q must be polynomials with integer coefficients. It is proved that this equation has nonconstant solutions if and only if $d = \pm 1, \pm 2$, and in these cases all solutions are determined.

Let d be an integer. We consider the polynomial Pell’s equation

\[P^2 - (x^2 + d)Q^2 = 1 \]

where P and Q are polynomials with integer coefficients. This equation always has the trivial solutions $P = \pm 1, Q = 0$, and these are the only constant solutions. In this note we prove that (1) has nontrivial solutions if and only if $d = \pm 1, \pm 2$, and in these cases we determine all solutions. This answers a question posed by S. Chowla.

Lower case letters ($\neq x$) denote integers, and upper case letters denote polynomials with integer coefficients. The degree of F is denoted $\deg F$.

Theorem 1. Let $d \neq \pm 1, \pm 2$. Then the polynomial Pell’s equation $P^2 - (x^2 + d)Q^2 = 1$ has no nontrivial solution.

Proof. The proof is by Fermat descent on $\deg P$. Let $|d| \geq 3$, and suppose that (1) has nontrivial solutions. Choose a solution P, Q of (1) with $\deg P$ minimal and $\deg P > 0$. There are two cases. If $d \neq -e^2$, then $x^2 + d$ is irreducible, and

\[(P - 1)(P + 1) = P^2 - 1 = (x^2 + d)Q^2. \]

It follows that $x^2 + d$ divides $P - 1$ or $P + 1$, say $P - 1$. Then $P - 1 = (x^2 + D)P_1$ and $P + 1 = (x^2 + d)P_1 + 2$, and so

\[P_1((x^2 + d)P_1 + 2) = Q^2. \]

Since the greatest common divisor of P_1 and $(x^2 + d)P_1 + 2$ is 1 or 2, it follows from (2) that one of the following four cases must hold:

(i) $(x^2 + d)P_1 + 2 = -P_2^2, P_1 = -Q_2^2$;
(ii) $(x^2 + d)P_1 + 2 = P_2^2, P_1 = Q_2^2$;
(iii) $(x^2 + d)P_1 + 2 = -2P_2^2, P_1 = -2Q_2^2$;
(iv) $(x^2 + d)P_1 + 2 = 2P_2^2, P_1 = 2Q_2^2$. Setting $x = \sqrt{-d}$ in (i), (ii), (iii), we find that $(a + b\sqrt{-d})^2 = \pm 2$ or $(a + b\sqrt{-d})^2 = -1$ for some integers a, b.

Received by the editors July 1, 1975.

Key words and phrases. Pell’s equations, polynomial diophantine equations.

© American Mathematical Society 1976

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
b. But for \(d \neq -c^2 \), \(|d| \geq 3\), this is impossible. Hence, (iv) must hold. Rewriting (iv), we obtain \(P_2 - (x^2 + d)Q_2 = 1 \). But 2 deg \(P_2 = 2 + \text{deg} \ P_1 = \text{deg} \ P \), and so \(0 < \text{deg} \ P_2 < \text{deg} \ P \). This contradicts the minimality of \(\text{deg} \ P \). Therefore, (1) has no nontrivial solutions if \(|d| \geq 3\) and \(d \neq -c^2 \).

Suppose that \(d = -c^2 \) and \(|c| > 2\). Then \(P(0)^2 + c^2 Q(0)^2 = 1 \), and so \(Q(0) = 0 \) and \(P(0) = \pm 1 \), say, \(P(0) = 1 \). Then \(P = 1 + xP_1 \) and \(Q = xQ_1 \). Substituting into (1), we obtain

\[
P_1(xP_1 + 2) = x(x^2 - c^2)Q_1^2.
\]

Clearly, \(P_1 = xP_2 \), and so

\[
(3) \quad P_2(x^2P_2 + 2) = (x^2 - c^2)Q_2^2.
\]

Suppose \(x \pm c \) divides \(x^2P_2 + 2 \). Setting \(x = \mp c \), we obtain \(c^2 P_2(\mp c) + 2 = 0 \), and so \(c^2 \) divides 2. This is impossible, since \(c^2 \geq 4 \). Therefore, both \(x + c \) and \(x - c \) divide \(P_2 \), and \(P_2 = (x^2 - c^2)P_3 \). Substituting into (3), we obtain

\[
P_3(x^2(x^2 - c^2)P_3 + 2) = Q_3^2.
\]

Again, the greatest common divisor of \(P_3 \) and \(x^2(x^2 - c^2)P_3 + 2 \) is 1 or 2, and the proof continues exactly as in the case \(|d| \geq 3\), \(d \neq -c^2 \).

Finally, let \(d = 0 \). If \(1 = P_2 - x^2Q_2 = (P - xQ)(P + xQ) \), then \(P - xQ = P + xQ = \pm 1 \). Adding these equations gives the trivial solutions \(P = \pm 1 \), \(Q = 0 \). This proves Theorem 1 in all cases.

Theorem 2. Let \(d = 1 \) or \(d = \pm 2 \). Define inductively two sequences of polynomials \(\{P_n\}_{n=0}^{\infty} \) and \(\{Q_n\}_{n=0}^{\infty} \) by \(P_0 = 1 \), \(Q_0 = 0 \), and, for \(n \geq 1 \),

\[
P_n = ((2/d)x^2 + 1)P_{n-1} + (2/d)x(x^2 + d)Q_{n-1},
\]
\[
Q_n = (2/d)xP_{n-1} + ((2/d)x^2 + 1)Q_{n-1}.
\]

Then \(P^2 - (x^2 + d)Q^2 = 1 \) if and only if \(P = \pm P_n \) and \(Q = \pm Q_n \) for some \(n \).

Proof. The proof uses a continued fraction recurrence. Let \(P \) and \(Q \) be polynomials. We define polynomials \(\Phi^+(P) \) and \(\Phi^+(Q) \) by

\[
\Phi^+(P) = \left(\frac{2}{d}x^2 + 1 \right)P + \frac{2}{d}x(x^2 + d)Q, \quad \Phi^+(Q) = \frac{2}{d}xP + \left(\frac{2}{d}x^2 + 1 \right)Q
\]

and we define polynomials \(\Phi^-(P) \) and \(\Phi^-(Q) \) by

\[
\Phi^-(P) = \left(\frac{2}{d}x^2 + 1 \right)P - \frac{2}{d}x(x^2 + d)Q, \quad \Phi^-(Q) = -\frac{2}{d}xP + \left(\frac{2}{d}x^2 + 1 \right)Q.
\]

One checks by direct computation that

\[
(4) \quad \Phi^+\Phi^- = \Phi^-\Phi^+ = P,
\]
\[
(5) \quad \Phi^+\Phi^- = \Phi^-\Phi^+ = Q,
\]
\[
(6) \quad (\Phi^-(P))^2 - (x^2 + d)(\Phi^-(Q))^2 = (\Phi^+(P))^2 - (x^2 + d)(\Phi^+(Q))^2 = P^2 - (x^2 + d)Q^2.
\]
Since \(P_0^2 - (x^2 + d)Q_0^2 = 1 \), and \(P_n = \Phi^+ (P_{n-1}) \) and \(Q_n = \Phi^+ (Q_{n-1}) \) for \(n \geq 1 \), it follows from (6) that \(P_n^2 - (x^2 + d)Q_n^2 = 1 \) for all \(n \).

We show by induction on \(m = \deg P \) that if \(P^2 - (x^2 + d)Q^2 = 1 \), then \(P = \pm P_n \) and \(Q = \pm Q_n \) for some \(n \).

Clearly, if \(m = 0 \), then \(P = \pm 1 = \pm P_0 \) and \(Q = 0 = Q_0 \).

If \(m = 1 \), then \(P = p_0 x + p_1 \) and \(Q = q_0 \), where \(p_0 \neq 0 \). Substituting into (1), we obtain

\[
P^2 - (x^2 + d)Q^2 = (p_0 x + p_1)^2 - (x^2 + d)q_0^2
\]

\[
= (p_0^2 - q_0^2)x^2 + 2p_0 p_1 x + (p_1^2 - dq_0^2) = 1.
\]

Since \(2p_0 p_1 = 0 \) and \(p_0 \neq 0 \), we have \(p_1 = 0 \). Then \(1 = p_1^2 - dq_0^2 = -dq_0^2 \). But this is impossible for \(d = 1 \) or \(d = \pm 2 \). Therefore, (1) has no solutions with \(m = \deg P = 1 \).

Let \(m \geq 2 \). Suppose that \(P^2 - (x^2 + d)Q^2 = 1 \), where \(\deg P = m \). Multiplying \(P \) and \(Q \) by \(\pm 1 \) if necessary, we can assume that

\[
P = p_0 x^m + p_1 x^{m-1} + p_2 x^{m-2} + \cdots + p_m,
\]

\[
Q = q_0 x^{m-1} + q_1 x^{m-2} + \cdots + q_{m-1},
\]

where \(p_0 \geq 1 \) and \(q_0 \geq 1 \). Squaring \(P \) and \(Q \) and collecting terms, we obtain

\[
1 = P^2 - (x^2 + d)Q^2
\]

\[
= (p_0^2 - q_0^2)x^{2m} + 2(p_0 p_1 - q_0 q_1)x^{2m-1}
\]

\[
+ (p_1^2 + 2p_0 p_2 - q_1^2 - 2q_0 q_2 - dq_0^2)x^{2m-2}
\]

\[
+ 2(p_0 p_3 + p_1 p_2 - q_0 q_3 - q_1 q_2 - dq_0 q_1)x^{2m-3} + \cdots + (p_m^2 - dq_m^2).
\]

The constant term equals 1, and the coefficients of all positive powers of \(x \) equal 0. Thus,

\[
(7) \quad p_0 = q_0,
\]

\[
(8) \quad p_1 = q_1,
\]

\[
(9) \quad 2p_2 = 2q_2 + dq_0,
\]

\[
(10) \quad 2p_3 = 2q_3 + dq_1,
\]

\[
(11) \quad p_m^2 - dq_m^2 = 1.
\]

In particular, if \(m = 2 \), conditions (7)-(11) imply that \(P = \pm ((2/d)x^2 + 1) = \pm P_1 \) and \(Q = \pm 2x/d = \pm Q_1 \).

We make the induction hypothesis that if \(P^2 - (x^2 + d)Q^2 = 1 \) and \(\deg P < m \), then \(P = \pm P_{n-1} \) and \(Q = \pm Q_{n-1} \) for some \(n \geq 1 \). Suppose that \(\deg P = m \). Then
\[\Phi^{-} P = ((2/d)x^2 + 1)P - (2/d)x(x^2 + d)Q \]
\[= (2/d)(p_0 - q_0)x^{m+2} + (2/d)(p_1 - q_1)x^{m+1} \]
\[+ ((2/d)p_2 + p_0 - (2/d)q_2 - 2q_0)x^m \]
\[+ ((2/d)p_3 + p_1 - (2/d)q_3 - 2q_1)x^{m-1} + \cdots. \]

It follows from conditions (7)–(10) that \(\deg \Phi^{-} P < m - 2 \). By (6), we have \((\Phi^{-} P)^2 - (x^2 + d)(\Phi^{-} Q)^2 = 1 \). Then by the induction hypothesis we know that \(\Phi^{-} P = \pm P_{n-1} \) and \(\Phi^{-} Q = \pm Q_{n-1} \) for some \(n \geq 1 \). Then (4) and (5) imply that \(P = \Phi^+ \Phi^{-} P = \pm \Phi^+ P_{n-1} = \pm P_n \) and \(Q = \Phi^+ \Phi^{-} Q = \pm \Phi^+ Q_{n-1} = \pm Q_n \). This concludes the proof.

Theorem 3. Define inductively two sequences of polynomials \(\{P_n\}_{n=0}^\infty \) and \(\{Q_n\}_{n=0}^\infty \) by \(P_0 = 1, Q_0 = 0, \) and, for \(n \geq 1, \)
\[P_n = xp_{n-1} + (x^2 - 1)Q_{n-1}, \quad Q_n = P_{n-1} + xQ_{n-1}. \]
Then \(P^2 - (x^2 - 1)Q^2 = 1 \) if and only if \(P = \pm P_n \) and \(Q = \pm Q_n \) for some \(n \).

Proof. Let \(P \) and \(Q \) be polynomials. We define polynomials \(\Psi^+ P \) and \(\Psi^{-} P \) by
\[\Psi^+ P = xP + (x^2 - 1)Q, \quad \Psi^+ Q = P + xQ, \]
and we define polynomials \(\Psi^{-} P \) and \(\Psi^{-} Q \) by
\[\Psi^{-} P = xP - (x^2 - 1)Q, \quad \Psi^{-} Q = -P + xQ. \]

One computes directly that
\[(\Psi^+ \Psi^{-} P = \Psi^{-} \Psi^+ P = P, \quad (\Psi^+ \Psi^{-} Q = \Psi^+ \Psi^{-} Q = Q, \]
\[(\Psi^+ P)^2 - (x^2 + 1)(\Psi^+ Q)^2 = (\Psi^{-} P)^2 - (x^2 + 1)(\Psi^{-} Q)^2 \]
\[= P^2 - (x^2 + 1)Q^2. \]

Since \(P_0^2 - (x^2 + 1)Q_0^2 = 1 \), and \(P_n = \Psi^+ P_{n-1} \) and \(Q_n = \Psi^+ Q_{n-1} \), it follows from (14) that \(P_n^2 - (x^2 + 1)Q_n^2 = 1 \) for all \(n \). The proof that every solution of \(P^2 - (x^2 + 1)Q^2 = 1 \) is of the form \(P = \pm P_n, Q = \pm Q_n \) is exactly like the proof of Theorem 2.

It is an open problem to determine the polynomials \(D \) for which the polynomial Pell’s equation \(P^2 - DQ^2 = 1 \) has nontrivial solutions.

Added in Proof. David Zeitlin (personal communication) has observed that the solutions of the polynomial Pell’s equations can all be neatly expressed in terms of the Chebyshev polynomials \(T_n(x) \) and \(U_n(x) \).