ON THE NONEXISTENCE OF GROUPS WITH EXTRA-SPECIAL COMMUTATOR SUBGROUP

MICHAEL D. MILLER

ABSTRACT. In this paper, we extend a result of Joseph and Finkelstein and show that there is no group G such that G' is an extra-special p-group of exponent $\geq p$ (p odd).

K. Joseph and L. Finkelstein [2] have shown that if p is an odd prime, there does not exist a finite group G satisfying the following three conditions:

(i) G' is an extra-special p-group of exponent $\geq p$.
(ii) $Z(G) \subseteq G'$.
(iii) G acts irreducibly on $G'/Z(G')$.

It is the object of this paper to prove that their result remains valid even if conditions (ii) and (iii) are dropped. That is, there is no finite group G such that G' is an extra-special p-group of exponent $\geq p$ (p odd).

Recall that a finite p-group G is called extra-special if $Z(G) = G^p$, and $|G'| = p$. We now list a series of lemmas which will be needed for the main theorem. In all that follows, p is an odd prime.

Lemma 1. Let G be an extra-special p-group. Then

(a) $(xy)^p = x^p y^p$,

(b) $x^p \in Z(G)$ for all $x, y \in G$.

Proof. See [1, p. 183].

Lemma 2. Let G be an extra-special p-group of exponent $\geq p$, and let $U = \{x \in G | x^p = 1\}$. Then U is a characteristic subgroup of G and $[G : U] = p$.

Proof. The fact that U is a characteristic subgroup follows immediately from Lemma 1(a), and the fact that automorphisms preserve order. The map $x \to x^p$ is a homomorphism of G onto $Z(G)$ with kernel U. Hence $G/U \cong Z(G)$ and $[G : U] = p$.

Lemma 3. Let G be a finite p-group of linear transformations acting on a vector space V over a field F of characteristic p. Then some nonzero vector of V is fixed by every element of G.

Proof. See [1, p. 31].

Lemma 4. Suppose an abelian group G acts as a group of linear transformations
on a vector space V over a field F. Let S be a subspace of V, and H a subgroup of G whose elements induce scalar transformations on S. Let S^G be the subspace of V generated by all vectors s^g, $s \in S$, $g \in G$. Then H also induces scalar transformations on S^G.

Proof. Let s_1^g, $s_2^g \in S^G$, and suppose $h \in H$ with $s^h = \lambda s$ for all $s \in S$. Then

$$(s_1^g + s_2^g)^h = s_1^{g^h} + s_2^{g^h} = (s_1^h)^g + (s_2^h)^g = (\lambda s_1)^g + (\lambda s_2)^g.$$

Similarly, if $c \in F$, then

$$(cs_1^g)^h = c(s_1^g)^h = c(s_1^h)^g = \lambda (cs_1^g).$$

The lemma follows.

Theorem. Let G be an extra-special p-group ($p > 2$) of exponent $> p$. Then there is no finite group K such that $K' = G$.

Proof. Suppose $K' = G$. Then K acts by conjugation on G'. Moreover, K acts in a natural way on $G/G' = \overline{G}$; namely, if $k \in K$, and $aG' \in G'$, then $(aG')^k = (k^{-1}ak)G'$. This is easily seen to be well defined. Now $\overline{K} = K/G$ is abelian, so we can write $\overline{K} = \overline{K}_p \times \overline{K}_p$, where \overline{K}_p is a p-group, and \overline{K}_p has order prime to p. The group \overline{K} acts in a natural way on \overline{G}. Indeed, if $K = K/G$ is \overline{K}-invariant, then we define $(aG')^x = (k^{-1}ak)G'$. To see that this is well defined, suppose $x = IG$ and $aG' = bG'$. We need to show that $(k^{-1}ak)G' = (l^{-1}bl)G'$, or equivalently that $l^{-1}b^{-1}k^{-1}ak \in G'$. But $l^{-1}b^{-1}k^{-1}ak = l^{-1}b^{-1}k^{-1}[a^{-1}]^t(b^{-1})bl \in G'$, since $kl^{-1} \in G$, and $ab^{-1} \in G'$.

Now \overline{G} is elementary abelian, so it is a vector space over \mathbb{Z}_p. Let $U = \{x \in G | x^p = 1\}$, and define $\overline{U} = U/G'$. By Lemma 2, U has index p in G, and \overline{U} is a subspace of \overline{G}. As U is characteristic in G, \overline{U} is \overline{K}_p-invariant, so by Maschke's Theorem [1, p. 66], there exists a \overline{K}_p-invariant subspace $W \subseteq \overline{G}$ such that $\overline{G} = \overline{U} \oplus W$. Let $\overline{W} = W/G'$. As $[G:U] = p$, W must have order p^2. Furthermore, W is cyclic since $W \not\subseteq U$.

The action of \overline{K} on \overline{G} is given by a character λ: $\overline{K} \rightarrow \mathbb{Z}$; that is, if $k \in \overline{K}$, then $c^k = c^{\lambda(k)}$ for all $c \in \overline{G}$. Clearly then, \overline{K}_p acts with character λ on \overline{G}, hence also on \overline{W}. Moreover, \overline{W} is not K-invariant. For suppose it were. Then \overline{W} would be normal in K, and $N_K(\overline{W})/C_K(\overline{W}) = K/C_K(\overline{W})$ would be abelian, which implies that $\overline{W} \subseteq Z(G)$, a contradiction. Thus $\overline{W}^\overline{K} \cap \overline{U} \neq \{1\}$, where $\overline{W}^\overline{K} = \langle w^k | w \in \overline{W}, k \in \overline{K} \rangle$. The p-group \overline{K}_p acts on $\overline{W}^\overline{K} \cap \overline{U}$, so by Lemma 3, there is a subgroup $V \subseteq \overline{W}^\overline{K} \cap \overline{U}$, of order p, which is elementwise fixed by \overline{K}_p.

As \overline{K}_p acts with character λ on \overline{W}, by Lemma 4, it acts with character λ on $\overline{W}^\overline{K}$, in particular on \overline{V}. If $\overline{V} = \overline{V}/G'$, then \overline{V} is elementary abelian of order p^2, and since \overline{V} is \overline{K}-invariant, $V \subseteq K$.

Let K_p and $K_{p'}$ be defined by $K_p/G = \overline{K}_p$ and $K_{p'}/G = \overline{K}_p$. Since \overline{K}_p fixes
V elementwise, and K_p fixes G' elementwise, K_p must act on V via matrices of the form $(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix})$. Also, the above discussion shows that K_p' acts on V via matrices of the form $(\begin{smallmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{smallmatrix})$.

We conclude that K acts on V via an abelian group of matrices, since matrices of the form $(\begin{smallmatrix} a & 0 \\ 0 & b \end{smallmatrix})$ commute. As $K' = G$, G acts trivially on V, that is $V \subseteq Z(G)$. This is a contradiction, and the theorem follows.

It might be worthwhile to note that if a group G is the commutator of any group K, then G is also the commutator of a finite group [3]. Hence the theorem is true without the restriction that K be finite.

ACKNOWLEDGMENTS. The author would like to thank Professor D. S. Passman for several valuable conversations.

REFERENCES

2. L. Finkelstein and K. Joseph, Groups whose commutator subgroup is an extra-special p-group (unpublished).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720