Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Notions of spanning surface equivalence


Author: Julian R. Eisner
Journal: Proc. Amer. Math. Soc. 56 (1976), 345-348
MSC: Primary 55A25; Secondary 57C25
DOI: https://doi.org/10.1090/S0002-9939-1976-0402716-6
MathSciNet review: 0402716
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that two natural notions of spanning surface equivalence differ for minimal spanning surfaces of knots in $ {S^3}$.


References [Enhancements On Off] (What's this?)

  • [1] W. R. Alford, Complements of minimal spanning surfaces of knots are not unique, Ann. of Math. (2) 91 (1970), 419-424. MR 40 #6527. MR 0253312 (40:6527)
  • [2] W. R. Alford and C. B. Schaufele, Complements of minimal spanning surfaces of knots are not unique. II, Topology of Manifolds (Proc. Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 87-96. MR 44 #5947. MR 0288751 (44:5947)
  • [3] R. J. Daigle, Complements of minimal surfaces (preprint). MR 0375283 (51:11479)
  • [4] -, More on complements of minimal spanning surfaces, Rocky Mountain J. Math. 3 (1973), 473-482. MR 0367968 (51:4210)
  • [5] R. H. Fox, A quick trip through knot theory, Topology of $ 3$-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 120-167. MR 25 #3522. MR 0140099 (25:3522)
  • [6] H. C. Lyon, Simple knots without unique minimal surfaces, Proc. Amer. Math. Soc. 43 (1974), 449-454. MR 0377850 (51:14019)
  • [7] L. P. Neuwirth, Knot groups, Ann. of Math. Studies, no. 56, Princeton Univ. Press, Princeton, N. J., 1965. MR 31 #734. MR 0176462 (31:734)
  • [8] H. Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1934), 571-592. MR 1512955
  • [9] J. R. Stallings, On fibering certain $ 3$-manifolds, Topology of $ 3$-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961, Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 95-100. MR 28 #1600.
  • [10] H. F. Trotter, Some knots spanned by more than one unknotted surface of minimal genus, Ann. of Math. Studies, no. 84, Princeton Univ. Press, Princeton, N. J., 1975, pp. 51-62. MR 0377851 (51:14020)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55A25, 57C25

Retrieve articles in all journals with MSC: 55A25, 57C25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0402716-6
Keywords: Knot, composite knot, minimal spanning surface, isotopic deformation
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society