Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Duality and Eilenberg-Mac Lane spectra


Author: T. Y. Lin
Journal: Proc. Amer. Math. Soc. 56 (1976), 291-299
MSC: Primary 55E10
DOI: https://doi.org/10.1090/S0002-9939-1976-0402738-5
MathSciNet review: 0402738
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Stable cohomotopy groups of Eilenberg-Mac Lane spectra of finite groups are shown to be trivial. This implies that the stable homotopy category, which is large enough to represent ordinary cohomology theory, cannot be self-dual. It can also be interpreted as an evidence to support Freyd's generating hypothesis and a proof of a stable version of a conjecture of D. Sullivan.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Stable homotopy theory, Springer-Verlag, Berlin and New York, 1964. MR 32 #3061. MR 0185597 (32:3061)
  • [2] J. F. Adams and H. R. Margolis, Modules over the Steenrod algebra, Topology 10 (1971), 271-282. MR 45 #3520. MR 0294450 (45:3520)
  • [3] J. F. Adams, Stable homotopy and generalized homology, Mathematics Lecture Notes, Univ. of Chicago, 1971.
  • [4] J. Boardman, Stable homotopy theory, mimeograph notes, Univ. of Warwick, Coventry, England, 1965.
  • [5] -, Stable homotopy theory is not self-dual, Proc. Amer. Math. Soc. 26 (1970), 369-370. MR 42 #3784. MR 0268887 (42:3784)
  • [6] B. Eckmann and P J. Hilton, Exact couples in an abelian category, J. Algebra 3 (1966), 38-87. MR 33 #164. MR 0191937 (33:164)
  • [7] P. Freyd, Stable homotopy, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), Springer, New York, 1965, pp. 121-172. MR 35 #2280. MR 0211399 (35:2280)
  • [8] P. J. Hilton, Homotopy theory and duality, Gordon and Breach, New York and London, 1965. MR 33 #6624. MR 0198466 (33:6624)
  • [9] J. Moore and F. Peterson, Nearly Frobenius algebra, Poincaré algebra and their modules, J. Pure Appl. Algebra 3 (1973), 83-93. MR 0335572 (49:353)
  • [10] G. Nishida, The nilpotent of elements of the stable homotopy groups of spheres, 1973 (preprint). MR 0341485 (49:6236)
  • [11] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Studies, no. 50, Princeton Univ. Press, Princeton, N. J., 1962. MR 26 #3056. MR 0145525 (26:3056)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55E10

Retrieve articles in all journals with MSC: 55E10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0402738-5
Keywords: Stable homotopy category, Spanier-Whitehead duality, Freyd's generating hypothesis, Eilenberg-Mac Lane spectrum, Moore spectrum, Adams spectral sequence
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society