Duality and Eilenberg-Mac Lane spectra

Author:
T. Y. Lin

Journal:
Proc. Amer. Math. Soc. **56** (1976), 291-299

MSC:
Primary 55E10

DOI:
https://doi.org/10.1090/S0002-9939-1976-0402738-5

MathSciNet review:
0402738

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Stable cohomotopy groups of Eilenberg-Mac Lane spectra of finite groups are shown to be trivial. This implies that the stable homotopy category, which is large enough to represent ordinary cohomology theory, cannot be self-dual. It can also be interpreted as an evidence to support Freyd's generating hypothesis and a proof of a stable version of a conjecture of D. Sullivan.

**[1]**J. Frank Adams,*Stable homotopy theory*, Lectures delivered at the University of California at Berkeley, vol. 1961, Springer-Verlag, Berlin-Göttingen-Heidelberg-New York, 1964. MR**0185597****[2]**J. F. Adams and H. R. Margolis,*Modules over the Steenrod algebra*, Topology**10**(1971), 271–282. MR**0294450**, https://doi.org/10.1016/0040-9383(71)90020-6**[3]**J. F. Adams,*Stable homotopy and generalized homology*, Mathematics Lecture Notes, Univ. of Chicago, 1971.**[4]**J. Boardman,*Stable homotopy theory*, mimeograph notes, Univ. of Warwick, Coventry, England, 1965.**[5]**J. M. Boardman,*Stable homotopy theory is not self-dual*, Proc. Amer. Math. Soc.**26**(1970), 369–370. MR**0268887**, https://doi.org/10.1090/S0002-9939-1970-0268887-4**[6]**B. Eckmann and P. J. Hilton,*Exact couples in an abelian category*, J. Algebra**3**(1966), 38–87. MR**0191937**, https://doi.org/10.1016/0021-8693(66)90019-6**[7]**Peter Freyd,*Stable homotopy*, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 121–172. MR**0211399****[8]**Peter Hilton,*Homotopy theory and duality*, Gordon and Breach Science Publishers, New York-London-Paris, 1965. MR**0198466****[9]**John C. Moore and Franklin P. Peterson,*Nearly Frobenius algebras, Poincaré algebras and their modules*, J. Pure Appl. Algebra**3**(1973), 83–93. MR**0335572**, https://doi.org/10.1016/0022-4049(73)90007-8**[10]**Goro Nishida,*The nilpotency of elements of the stable homotopy groups of spheres*, J. Math. Soc. Japan**25**(1973), 707–732. MR**0341485**, https://doi.org/10.2969/jmsj/02540707**[11]**N. E. Steenrod,*Cohomology operations*, Lectures by N. E. STeenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. MR**0145525**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55E10

Retrieve articles in all journals with MSC: 55E10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0402738-5

Keywords:
Stable homotopy category,
Spanier-Whitehead duality,
Freyd's generating hypothesis,
Eilenberg-Mac Lane spectrum,
Moore spectrum,
Adams spectral sequence

Article copyright:
© Copyright 1976
American Mathematical Society