Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weak convergence of semigroups implies strong convergence of weighted averages


Author: Humphrey Fong
Journal: Proc. Amer. Math. Soc. 56 (1976), 157-161
MSC: Primary 47A35; Secondary 28A65
DOI: https://doi.org/10.1090/S0002-9939-1976-0405133-8
Erratum: Proc. Amer. Math. Soc. 61 (1976), 186.
MathSciNet review: 0405133
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a fixed $ p,1 \leqslant p < \infty $, let $ \{ {T_t}:t > 0\} $ be a strongly continuous semigroup of positive contractions on $ {L_p}$ of a $ \sigma $-finite measure space. We show that weak convergence of $ \{ {T_t}:t > 0\} $ in $ {L_p}$ is equivalent with the strong convergence of the weighted averages $ \int_0^\infty {{T_t}f{\mu _n}(dt)(n \to \infty )} $ for every $ f \in {L_p}$ and every sequence $ ({\mu _n})$ of signed measures on $ (0,\infty )$, satisfying $ {\sup _n}\vert\vert{\mu _n}\vert\vert < \infty ;{\lim _n}{\mu _n}(0,\infty ) = 1$; and for each $ d > 0,{\lim _n}{\sup _{c \geqslant 0}}\vert{\mu _n}\vert(c,c + d] = 0$. The positivity assumption is not needed if $ p = 1$ or 2. We show that such a result can be deduced-not only in $ {L_p}$, but in general Banach spaces-from the corresponding discrete parameter version of the theorem.


References [Enhancements On Off] (What's this?)

  • [1] M. Akcoglu and L. Sucheston, On operator convergence in Hilbert space and in Lebesgue space, Period. Math. Hungar. 2 (1972), 235-244. MR 48 #4777. MR 0326433 (48:4777)
  • [2] -, On convergence of iterates of positive contractions in $ {L_p}$ spaces, J. Approximation Theory (to appear).
  • [3] -, On weak and strong convergence of positive contractions in $ {L_p}$ spaces, Bull. Amer. Math. Soc. 81 (1975), 105-106. MR 0360998 (50:13445)
  • [4] J. R. Blum and D. L. Hanson, On the mean ergodic theorem for subsequences, Bull. Amer. Math. Soc. 66 (1960), 308-311. MR 22 #9572. MR 0118803 (22:9572)
  • [5] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [6] H. Fong and L. Sucheston, On a mixing property of operators in $ {L_p}$ spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1974), 165-171. MR 0367152 (51:3394)
  • [7] D. L. Hanson and G. Pledger, On the mean ergodic theorem for weighted averages, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 141-149. MR 40 #7423. MR 0254214 (40:7423)
  • [8] L. K. Jones and V. Kuftinec, A note on the Blum-Hanson theorem, Proc. Amer. Math. Soc. 30 (1971), 202-203. MR 43 #6742. MR 0281023 (43:6742)
  • [9] M. Lin, Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19 (1971), 231-242. MR 46 #8317. MR 0309207 (46:8317)
  • [10] R. Sato, A note on operator convergence for semi-groups, Comment. Math. Univ. Carolinae 15 (1974), 127-129. MR 0341140 (49:5890)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A35, 28A65

Retrieve articles in all journals with MSC: 47A35, 28A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0405133-8
Keywords: Banach space, $ {L_p}$-space, semigroup of operators, weak convergence, ergodic theorem
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society