A NOTE ON SOME PROPERTIES OF \(\mathcal{A}\)-FUNCTIONS

H. SARBADHIKARI

Abstract. This note deals with \((\mathcal{M}, \ast)\) functions for various families \(\mathcal{M}\). It is shown that if \(\mathcal{M}\) is the family of Borel sets of additive class \(\alpha\) on a metric space \(X\), then \((\mathcal{M}, \ast)\) functions are just the functions of the form \(\sup_y g(x, y)\) where \(g: X \times R \to R\) is continuous in \(y\) and of class \(\alpha\) in \(x\). If \(\mathcal{M}\) is the class of analytic sets in a Polish space \(X\), then the \((\mathcal{M}, \ast)\) functions dominating a Borel function are just the functions \(\sup_y g(x, y)\) where \(g\) is a real valued Borel function on \(X^2\). It is also shown that there is an \(\mathcal{A}\)-function \(f\) defined on an uncountable Polish space \(X\) and an analytic subset \(C\) of the real line such that \(f^{-1}(C) \not\in \sigma\)-algebra generated by the analytic sets on \(X\).

1. Introduction. Let \(X\) be any set and \(\mathcal{M}, \mathcal{N}\) be classes of subsets of \(X\). Following Hausdorff, we call a real valued function \(f\) on \(X\) a function of class \((\mathcal{M}, \ast)\) if \(\{x: f(x) > c\}\) is in \(\mathcal{M}\) for every \(c\). If \(\{x: f(x) > c\}\) is in \(\mathcal{N}\) for every \(c\), \(f\) is said to be of class \((\ast, \mathcal{N})\). Set \((\mathcal{M}, \mathcal{N}) = (\mathcal{M}, \ast) \cap (\ast, \mathcal{N})\).

If \(X\) is a metric space and \(\mathcal{M}\) is the family of sets of additive Borel class \(\alpha\), then functions of class \((\mathcal{M}, \ast)\) are called \(\alpha\)-functions; if \(X\) is Polish and \(\mathcal{M}\) is the family of analytic sets, they are called \(\mathcal{A}\)-functions. We shall prove the following theorems:

Theorem 1. Let \(f\) be a real valued function on a metric space \(X\). Then \(f\) is an \(\alpha\)-function if, and only if, there is a real valued function \(g\) defined on \(X \times R\), where \(R\) is the real line, such that \(g(x, y)\) is a continuous function of \(y\) for fixed \(x\), is of class \(\alpha\) in \(x\) for fixed \(y\) and \(f(x) = \sup_y g(x, y)\).

Theorem 2. Let \(X\) be a Polish space and let \(f\) be a real valued function on \(X\) which is bounded below. Then \(f\) is an \(\mathcal{A}\)-function if, and only if, there is a real valued Borel function \(g\) on \(X^2\) such that \(f(x) = \sup_y g(x, y)\).

Theorem 3. Let \(\mathcal{A}\) be the \(\sigma\)-algebra generated by analytic sets on an uncountable Polish space \(X\). There is an \(\mathcal{A}\)-function \(f\) on \(X\) and an analytic subset \(C\) of the real line such that \(f^{-1}(C) \not\in \mathcal{A}\).

Theorem 3 answers in the negative a question raised by David Blackwell.

2. Proof of Theorem 1. We define a complete ordinary function system on a set \(X\) as a system \(F\) of real valued functions on \(X\) satisfying:
(a) Every constant function is in \(F \).
(b) If \(f, g \in F \), then \(\max(f, g), \min(f, g), f \pm g, f \cdot g \in F \). If \(g \) does not vanish anywhere, then \(f/g \in F \).
(c) If \(f_n \in F \) for all \(n \) and \(f_n \) converges uniformly to \(f \), then \(f \in F \).

We first prove the following:

Theorem 4. Let \(F \) be a complete ordinary function system on a set \(X \). Let \(P, Q \) be the families of sets \(\{x: h(x) > c\}, \{x: h(x) \geq c\} \), for \(h \in F \) and \(c \) real, respectively. \(f \in (P, \bullet) \) if, and only if, there is a real valued function \(g \) defined on \(X \times R \) such that \(g(x, y) \)

(a) is continuous in \(y \) for fixed \(x \),
(b) is in \(F \) for fixed \(y \), and
(c) \(\sup_y g(x, y) = f(x) \).

Proof. Suppose \(g(x, y) \) is a function on \(X \times R \) satisfying conditions (a) and (b) and suppose \(\sup_y g(x, y) \) exists and is \(f(x) \). Let \(c \) be any real number. Then

\[
 f(x) > c \iff \exists y \{g(x, y) > c\} \iff \exists y \{y \text{ is rational and } g(x, y) > c\},
\]

since \(g(x, y) \) is continuous in \(y \). Thus

\[
 \{x: f(x) > c\} = \bigcup_{y \text{ rational}} \{x: g(x, y) > c\}.
\]

For fixed \(r \), \(g(x, r) \in F \) and hence \(\{x: g(x, r) > c\} \in P \). Now as \(P \) is closed under countable unions (cf. [1]), \(\{x: f(x) > c\} \in P \).

Conversely, suppose \(f \in (P, \bullet) \). It is shown in [1] that there is an increasing sequence \(\{f_n\} \) in \(F \) which converges to \(f \). Define \(g \) on \(X \times R \) by \(g(x, y) = (f_{n+1}(x) - f_n(x))(|y| - n) + f_n(x) \) for \(|y| \in [n, n + 1] \). It is easy to see that \(g \) is well defined for all \((x, y) \) and satisfies (a) and (b). As \(f_n(x) \leq g(x, y) \leq f_{n+1}(x) \) for \(|y| \in [n, n + 1] \) and \(\sup_y f_n(x) = f(x) \), \(\sup_y g(x, y) = f(x) \).

Theorem 1 follows from Theorem 4 and the following:

Lemma. Let \(F \) be the family of all functions of class \(\alpha \) on a Polish space \(X \). Then \(F \) is a complete ordinary function system and the sets of the form \(\{x: f(x) > c\}, f \in F, c \) real, are just the sets of additive Borel class \(\alpha \).

Proof. It is shown in [3] that \(F \) forms a complete ordinary function system.

Any set of the form \(\{x: f(x) > c\}, f \in F, c \) real, is clearly of additive Borel class \(\alpha \). Let \(A \) be any set of additive Borel class \(\alpha \). If \(\alpha = 0 \), \(A \) is a cozero set and hence \(A = \{x: f(x) > 0\} \) for some continuous function \(f \). If \(\alpha > 0 \), then we can write \(A = \bigcup_{n=1}^{\infty} A_n \) where the \(A_n \)'s are ambiguous of class \(\alpha \). Let \(f(x) = \sum_{n=1}^{\infty} 2^{-n} I_{A_n}(x) \) where \(I_{A_n} \) denotes the indicator function of \(A_n \). As \(I_{A_n} \) is of class \(\alpha \), \(f \) is of class \(\alpha \) and \(A = \{x: f(x) > 0\} \).

3. **Proof of Theorem 2.** If \(f(x) = \sup_y g(x, y) \) where \(g \) is Borel measurable, it is shown in [3] that \(f \) is an \(A \)-function. For this, \(f \) need not be bounded below.

Let \(f \) be an \(A \)-function on \(X \) such that \(f(x) \geq a \) for a fixed real number \(a \). Without loss of generality, we take \(X = R \). Let \((r_n) \) enumerate all rationals. Let \(A = \{(x, y): f(x) > y\} \). Then \(A = \bigcup_n \{(x, y): f(x) > r_n > y\} \) and hence is analytic. Let \(B \subset R^3 \) be a Borel set such that \(A = \) projection of \(B \) i.e. \((x, y) \in A \iff \exists z((x, y, z) \in B) \). Let \(k: R^3 \rightarrow R^3 \) be defined by

\[
 k(x, y, z) = \begin{cases} (x, y, z) & \text{if } (x, y, z) \in B, \\ (a, a, a) & \text{otherwise.} \end{cases}
\]
Then, as k is Borel measurable so is $\tau_2 k$ where τ_2 denotes projection to the second coordinate and

$$
\tau_2 k(x,y,z) = \begin{cases} y & \text{if } (x,y,z) \in B, \\
 a & \text{otherwise}.
\end{cases}
$$

Thus $\sup_{(y,z)} \tau_2 k(x,y,z) = \sup_{(y,z)} \{ \{ y : y < f(x) \} \cup \{ a \} \} = f(x)$. Let ϕ be a Borel isomorphism from R onto R^2. Let $h : R^2 \to R^3$ be defined by $h(x,y) = (x,\phi(y))$ and let $g(x,y) = \tau_2 kh(x,y)$. Then g is Borel measurable and $f(x) = \sup_y \tau_2 k(x,\phi(y)) = \sup_y g(x,y)$.

Remark. It is easy to see that Theorem 2 holds even if the condition "f is bounded below" is replaced by "f dominates a Borel function". Thus an A-function is of the form $\sup_y g(x,y)$ for some Borel measurable g if, and only if, it dominates a Borel function. Equivalently, every A-function is of the form $\sup_y g(x,y)$ for some Borel measurable g if, and only if, given an ascending sequence of analytic sets $\{ A_n \}$ such that $\bigcup_{n=1}^{\infty} A_n = X$, there is an ascending sequence $\{ B_n \}$ of Borel sets such that $B_n \subset A_n$ and $\bigcup_{n=1}^{\infty} B_n = X$. However, we do not know if this condition always holds.

4. **Proof of Theorem 3.** In X, we put $S_0 = \text{the family of open sets}$, $B_0 = \sigma(S_0)$ and, for $0 < \alpha < \omega_1$, $S_\alpha = \sigma(\cup_{\beta < \alpha} S_\beta)$ and $B_\alpha = \sigma(S_\alpha)$ where, for any family of sets G, $\sigma(G)$ denotes the σ-algebra generated by G and $\sigma(G)$ denotes the smallest family containing G and closed under operation A.

We call $(S_\alpha, *)$ functions S_α-functions. Theorem 3 is obtained from the following more general theorem by putting $\alpha = 1$.

Theorem 5. On any uncountable Polish space X, there is an S_α-function f and there is an analytic subset C of the real line such that $f^{-1}(C) \notin B_\alpha$.

Proof. It is known that B_α is not closed under operation A (cf. [2]). Let $(Z_{n_1}, \ldots, Z_{n_k}) \subset B_\alpha$ be such that $\bigcap_{n \in \mathbb{N}} \bigcap_{k=1}^{\infty} Z_{n_1} \cdots Z_{n_k} \notin B_\alpha$, where \mathbb{N} denotes the family of all sequences of positive integers and $n = (n_1, n_2, \ldots)$. We can find countably many sets $\{ A_i \}$ in S_α such that for all n and k, $Z_{n_1} \cdots Z_{n_k} \in \sigma(\{ A_i \})$.

Let $f(x) = \sum_{i=1}^{\infty} (2/3^i) I_{A_i}(x)$. As the sum of two S_α-functions, a positive constant multiple of an S_α-function and the limit of an increasing sequence of S_α-functions are all S_α-functions, f is an S_α-function. As $f^{-1}(B) = \sigma(\{ A_i \})$ where B is the Borel σ-algebra on R, we can find, for all n and k, $B_{n_1} \cdots B_{n_k} \in B$ such that $f^{-1}(B_{n_1} \cdots B_{n_k}) = Z_{n_1} \cdots Z_{n_k}$. Let $C = \bigcup_{n \in \mathbb{N}} \cap_{k=1}^{\infty} B_{n_1} \cdots B_{n_k}$. Then C is analytic and $f^{-1}(C) = \bigcup_{n \in \mathbb{N}} \cap_{k=1}^{\infty} Z_{n_1} \cdots Z_{n_k} \notin B_\alpha$.

Remark. Let X be any set and L a σ-additive lattice on X containing X and the null set, such that $\sigma(L)$ is not closed under operation A. We call a real valued function f on X an L^*-function if for every c, $\{ x : f(x) > c \} \in L$. Evidently $f^{-1}(B) \subset \sigma(L)$. However, we can find an analytic set C and an L^*-function f such that $f^{-1}(C) \notin \sigma(L)$. The proof is similar to that of Theorem 5.

Acknowledgement. I am grateful to Dr. Ashok Maitra for his many suggestions. I am indebted to Dr. B. V. Rao for various discussions and for greatly simplifying and improving the proof of Theorem 3. I am also grateful to Dr. M. G. Nadkarni and Dr. K. P. S. B. Rao for some discussions. I am grateful to the referee for his suggestions.
REFERENCES

STATISTICS-MATHEMATICS DIVISION, INDIAN STATISTICAL INSTITUTE, CALCUTTA, INDIA