Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Residual equisingularity


Authors: Joseph Becker and John Stutz
Journal: Proc. Amer. Math. Soc. 56 (1976), 217-220
MSC: Primary 32C40
DOI: https://doi.org/10.1090/S0002-9939-1976-0414926-2
MathSciNet review: 0414926
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ V$ be a complex analytic set and $ \operatorname{Sg} V$ the singular set of $ V$ be in codimension one; then the set of points of $ \operatorname{Sg} V$ for which $ V$ is not residually equisingular along $ \operatorname{Sg} V$ is a proper analytic subset of $ \operatorname{Sg} V$. $ V$ is said to be residually equisingular along $ \operatorname{Sg} V$ if all one dimensional slices of $ V$ transverse to $ \operatorname{Sg} V$ have isomorphic resolutions.


References [Enhancements On Off] (What's this?)

  • [1] J. Becker and J. Stutz, Resolving singularities via local quadratic transformations, Rice Univ. Studies 59 (1973), 1-9. MR 0335849 (49:627)
  • [2] J. Stutz, Analytic sets as branched coverings, Trans. Amer. Math. Soc. 166 (1972), 241-259. MR 48 #2420. MR 0324068 (48:2420)
  • [3] -, Equisingularity and equisaturation in codimension 1, Amer. J. Math. 94 (1972), 1245-1268. MR 0333240 (48:11565)
  • [4] K. Fischer, The module decomposition of $ I(\bar A/A)$, Trans. Amer. Math. Soc. 186 (1973), 113-128. MR 0337947 (49:2716)
  • [5] O. Zariski, Studies in equisingularity. I, II, III, Amer. J. Math. 87 (1965), 507-536, 972-1006; ibid. 90 (1968), 961-1023. MR 31 #2243; 33 #125; 38 #5775.n

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32C40

Retrieve articles in all journals with MSC: 32C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0414926-2
Keywords: Residual equisingularity, local quadratic transformation, analytic variety, resolution
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society