Residual equisingularity
Authors:
Joseph Becker and John Stutz
Journal:
Proc. Amer. Math. Soc. 56 (1976), 217-220
MSC:
Primary 32C40
DOI:
https://doi.org/10.1090/S0002-9939-1976-0414926-2
MathSciNet review:
0414926
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a complex analytic set and
the singular set of
be in codimension one; then the set of points of
for which
is not residually equisingular along
is a proper analytic subset of
.
is said to be residually equisingular along
if all one dimensional slices of
transverse to
have isomorphic resolutions.
- [1] J. Becker and J. Stutz, Resolving singularities via local quadratic transformations, Rice Univ. Studies 59 (1973), 1-9. MR 0335849 (49:627)
- [2] J. Stutz, Analytic sets as branched coverings, Trans. Amer. Math. Soc. 166 (1972), 241-259. MR 48 #2420. MR 0324068 (48:2420)
- [3] -, Equisingularity and equisaturation in codimension 1, Amer. J. Math. 94 (1972), 1245-1268. MR 0333240 (48:11565)
- [4]
K. Fischer, The module decomposition of
, Trans. Amer. Math. Soc. 186 (1973), 113-128. MR 0337947 (49:2716)
- [5] O. Zariski, Studies in equisingularity. I, II, III, Amer. J. Math. 87 (1965), 507-536, 972-1006; ibid. 90 (1968), 961-1023. MR 31 #2243; 33 #125; 38 #5775.n
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32C40
Retrieve articles in all journals with MSC: 32C40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1976-0414926-2
Keywords:
Residual equisingularity,
local quadratic transformation,
analytic variety,
resolution
Article copyright:
© Copyright 1976
American Mathematical Society