Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the structure of Lindenbaum algebras: an approach using algebraic logic

Author: Charles C. Pinter
Journal: Proc. Amer. Math. Soc. 56 (1976), 267-271
MSC: Primary 02J15
MathSciNet review: 0419226
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The following problem of algebraic logic is investigated: to determine those Boolean algebras which admit the structure of a nondiscrete cylindric algebra. A partial solution is found, and is then used to give an algebraic characterization of the Lindenbaum algebras of formulas of several broad classes of countable theories.

References [Enhancements On Off] (What's this?)

  • [1] L. Henkin, J. D. Monk and A. Tarski, Cylindric algebras. Part 1. With an introductory chapter: General theory of algebras, Studies in Logic and the Foundations of Math., vol. 64, North-Holland, Amsterdam, 1971. MR 47 #3171.
  • [2] L. Henkin and A. Tarski, Cylindric algebras, Proc. Sympos. Pure Math., vol. 2, Amer. Math. Soc., Providence, R.I., 1961, pp. 83-113. MR 23 #A1564. MR 0124250 (23:A1564)
  • [3] H.-J. Hoehnke, Zur Strukturgleichheit axiomatischer Klassen, Z. Math. Logik Grundlagen Math. 12 (1966), 69-83. MR 32 #5499. MR 0188058 (32:5499)
  • [4] C. Pinter, Terms in cylindric algebras, Proc. Amer. Math. Soc. 40 (1973), 568-572. MR 48 #3738. MR 0325391 (48:3738)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 02J15

Retrieve articles in all journals with MSC: 02J15

Additional Information

Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society