LIE GROUPS ISOMORPHIC TO DIRECT PRODUCTS OF UNITARY GROUPS

IVAN VIDAV AND PETER LEGIŠA

Abstract. A criterion is given for a compact connected subgroup of \(\text{Gl}(n, \mathbb{C}) \) to be isomorphic to a direct product of unitary groups. It implies that a compact connected subgroup of rank \(n \) in \(\text{Gl}(n, \mathbb{C}) \) is isomorphic to a direct product of unitary groups.

The paper gives a generalization of some of the results in [3]. Let \(G \) be a compact connected subgroup of \(\text{Gl}(n, \mathbb{C}) \). We denote by \(L(G) \) the Lie algebra of \(G \) and set \(H(G) = \text{i}L(G) \). The rank of \(G \) is the dimension of a maximal torus in \(G \) (see [1, p. 93]).

Theorem. Let \(G \) be a compact connected subgroup of rank \(k \) in \(\text{Gl}(n, \mathbb{C}) \). Suppose there exist \(r > k \) orthogonal idempotents \(a_1, \ldots, a_r \) in \(H(G) \). Then \(r = k \) and \(G \) is isomorphic (as a Lie group) to a direct product of unitary groups:

\[G \cong U(n_1) \times \cdots \times U(n_m) \text{ with } n_1 + \cdots + n_m = k. \]

Proof. By [2, p. 176, Theorem 1] \(G \) is similar to a subgroup of \(U(n) \). Hence we may assume that \(G \) is a subgroup of \(U(n) \). Thus the operators in \(H(G) \subset \text{End}(\mathbb{C}^n) \) are hermitian. Since \(a_1, \ldots, a_r \) commute we see that \(T = \{ \exp(it_1a_1 + \cdots + it_ra_r) | t_1, \ldots, t_r \in \mathbb{R} \} \) is a torus in \(G \) of dimension \(r \). Clearly \(r = k \) and \(T \) is a maximal torus. If \(a \in H(G) \) then \(\exp(ita) \in G \) and is contained in some conjugate of \(T \) (see [1, p. 89]), i.e. \(\exp(ita) \in u^{-1}Tu = u^*Tu \) for some \(u \in G \). It follows that \(a = t_1u^*a_1u + \cdots + t_ru^*a_ru \). Since \(a^2 = t_1^2u^*a_1^2u + \cdots + t_r^2u^*a_r^2u \) and \(u^*a_su \in H(G) \) for \(s = 1, \ldots, r \) we see that \(a^2 \in H(G) \). Let \(b \in H(G) \), too. Since \(ab + ba = (a + b)^2 - a^2 - b^2 \) we see that \(ab + ba \in H(G) \). Also, \(ab - ba \in iH(G) \) since \(ia, ib \in L(G) \). Thus \(ab \in H(G) + iH(G) \). Let \(A(G) = H(G) + iH(G) \). It follows that \(A(G) \) is an algebra. Clearly, it is a finite dimensional C*-algebra. By the Wedderburn decomposition there exist central idempotents \(e_1, \ldots, e_m \in A(G) = A \) such that \(A = Ae_1 \oplus \cdots \oplus Ae_m \) and \(Ae_s \) is isomorphic to \(\text{End}(X_s) \) for some finite dimensional vector space \(X_s \) over \(\mathbb{C} \) (\(s = 1, \ldots, m \)).

The ideal \(Ae_1 \) is closed, hence selfadjoint and a C*-subalgebra of \(A \). Clearly, \(e_1 \) is the identity on \(Ae_1 \) and hence \(e_1^* = e_1 \). Consider the group \(V \) of unitary elements in \(Ae_1 \). The isomorphism \(Ae_s \cong \text{End}(X_s) \) defines a (continuous) representation of \(V \) on \(X_s \). Using once more [2, p. 176, Theorem 1] we equip \(X_s \) with an inner product such that the isomorphism maps \(V \) into the unitary...
group of \(\mathcal{L}(X_s) \), the C*-algebra of all linear operators on the Hilbert space \(X_s \). Consequently, hermitian elements in \(A_{es} \) are mapped into hermitian operators and our isomorphism in an isometric*-isomorphism. We identify the algebras \(A_{es} \) and \(\mathcal{L}(X_s) \) in this sense.

Since \(\exp: L(G) \rightarrow G \) is surjective, \(G \subseteq A \). If \(u \in G \) then \((ue_s)^* ue_s = e_s u^* u e_s = e_s \). Thus \(ue_s \) is a unitary operator on \(X_s \). Consider the smooth homomorphism \(G \rightarrow U(X_1) \times \cdots \times U(X_m) \) given by \(u \mapsto (ue_1, \ldots, ue_m) \) (\(U(X_j) \) denotes the unitary group on \(X_j \)). We claim this homomorphism is onto. Let \(u_l \in U(X_1) \). There exists a hermitian element \(h_l \in Ae_l \) such that \(\exp(ih_l) = u_l \). Consider \(h_l \) as an element in \(A \). Then \(\exp(ih_l) = (u_l, 1, \ldots, 1) \). Observe that the inverse \((ue_1, \ldots, ue_m) \mapsto ue_1 + \cdots + ue_m \) is also smooth and that \(\text{rank}(U(n_1) \times \cdots \times U(n_m)) = n_1 + \cdots + n_m \).

Corollary. Let \(G \) be a compact connected subgroup of rank \(n \) in \(\text{Gl}(n, \mathbb{C}) \). Then \(G \) is isomorphic (as a Lie group) to a direct product of unitary groups.

Proof. As before, we may assume that \(G \leq U(n) \). Let \(T \) be a maximal torus in \(G \). Then \(iL(T) \) contains \(n \) commuting linearly independent hermitian operators, say \(h_1, \ldots, h_n \). It is well known that these operators have a common orthogonal eigenbasis. Thus there exist \(s \leq n \) orthogonal projections \(p_1, \ldots, p_s \) such that every \(h_i \) is a linear combination of \(p_1, \ldots, p_s \). Since \(h_1, \ldots, h_n \) are linearly independent, \(s = n \). Thus \(iL(G) \) contains \(n \) orthogonal idempotents and we may use the Theorem.

References

Department of Mathematics, University of Ljubljana, Ljubljana, Yugoslavia