INTEGRAL CLOSURES OF UNCOUNTABLE
COMMUTATIVE REGULAR RINGS

L. LIPSHITZ

Abstract. Necessary and sufficient conditions are given for a commutative
regular ring to have a prime integrally closed extension.

In this paper we give necessary and sufficient conditions for a commutative
regular ring R to have a prime integral closure. In [1] it was shown that for a
commutative regular ring R to have a prime integral closure, it is necessary
that every polynomial $p(x)$ in $R[x]$ have an unambiguous factor (see definitions
below), and that in the case that R is countable this condition is also sufficient.
An example was given to show that this condition is not sufficient if R is
uncountable. It was also seen in [1] that if R has a prime integral closure, then
this closure is unique. I would like to thank Bonnie Gold and Gadi Moran for
helpful conversations during the preparation of this paper.

Definitions. (1) K_{CR} is the theory of commutative regular rings;

$$K_{CR} = K_{CR} \cup \{\text{every monic polynomial has a root}\}$$

is the theory of integrally closed commutative regular rings.

(2) If $R \models K_{CR}$ and $p(x) \in R[x]$, we call $p(x)$ unambiguous if on no nonzero
idempotent e is it the case that $p(x) = u(x)v(x)$ with $(u(x), v(x)) = 1$ on e. (An
identity holds on e if it holds in Re.) This condition is equivalent to $p(x)$ being
a power of an irreducible polynomial at every point of S_R, the Stone space of
R (= Spec (R)).

$$T = K_{CR} \cup \{\text{every polynomial has an unambiguous factor}\}.$$

(3) If $R \models K_{CR}$ and $R \subset \bar{R} \models K_{CR}$, we call \bar{R} a prime extension of R to a
model of K_{CR}, or an (in fact the) integral closure of R if whenever
$f: R \to R_1 \models K_{CR}$ is an embedding, f extends to an embedding of \bar{R} into R_1. If
we drop the condition that $\bar{R} \models K_{CR}$ we call \bar{R} a prime extension of R.

(4) If $R \models K_{CR}$ and $R \subset \bar{R} \models K_{CR}$, we call \bar{R} sequentially prime over R if
$\bar{R} = \bigcup_{a<\lambda} \bar{R}_a$ with $R_0 = R$, $R_\delta = \bigcup_{a<\delta} R_a$ for limit ordinals $\delta < \lambda$ and
$R_{a+1} = R_a[a_a]$, with a_a a root of an unambiguous polynomial $p_a(x) \in R_a[x]$.
(In other words, \bar{R} can be realized as a sequence of one element extensions,
each prime over the previous ones—see [1].)

Received by the editors February 28, 1975 and, in revised form, June 21, 1975.
Key words and phrases. Commutative regular rings, integrally closed rings, prime model
extensions.

1 This research supported by NSF grant GP43749.
Let $R \subseteq K_{CR}$. We call R thin if there is a set $\mathcal{P} \subseteq R_1[x]$, where R_1 is the inseparable closure of R—see [1], such that (a) every polynomial $p(x) \in \mathcal{P}$ is normal (in the sense that adjoining one root of $p(x)$ splits $p(x)$ into linear factors) and unambiguous. (b) If $R' \supset R$ splits every polynomial in \mathcal{P} and is generated over R by the roots of these polynomials, then $R' \subseteq K_{CR}$. (c) Each $p(x) \in \mathcal{P}$ is defined and monic on some idempotent $e_p(eR)$ and $p(x) = p(x)e_p$. (d) If $A \subseteq \mathcal{P}$ is countable, there is a countable B with $A \subseteq B \subseteq \mathcal{P}$ such that if R' results from R by adjoining roots of all the polynomials $p(x) \in B$ (in the sequentially prime way—see [1]), then in $R'[x]$ every polynomial $p(x) \in \mathcal{P}$ factors on e_p into unambiguous monic factors. We shall call such a \mathcal{P} a thin basis for R.

We shall show that if R is prime over R, then \overline{R} is sequentially prime over R and consequently that R has a prime integral closure if and only if R is thin.

Remark. In definition (5) above the only important conditions are (b) and (d); i.e. if we have a set of polynomials which satisfies (b) and (d), then we can construct a set satisfying (a)–(d). Notice also that if R is thin, then $R \supset T$.

From now on, when $R \subseteq T$, we shall assume that R is inseparably closed (i.e. every purely inseparable polynomial in $R[x]$ has a root). This involves no loss of generality since the inseparable closure R_1 of R always exists and is prime and in fact sequentially prime over R. If R is inseparably closed instead of unambiguous polynomials, we can talk of irreducible polynomials (see [1]). Also all irreducible polynomials are then separable and, consequently, we have the primitive element theorem holding.

Let $R \subseteq T$ and let $\mathcal{P} = \{ p(x) \in R[x] | p(x) \text{ is normal, monic and unambiguous} \}$. Let

$$R^* = \prod_{j \in J} R[[x_p | p \in \mathcal{P}]],$$

where the product is over all isomorphism types of $R[[x_p | p \in \mathcal{P}]]$ such that $p(x_p) = 0$ for all $p \in \mathcal{P}$. Let \overline{R} be the subring of R^* generated by the sequences $x_p = (x_{p,j})_{j \in J}$, over R. It follows from Lemma 1 of [2] or Lemma 2 of [1] that \overline{R} is a commutative regular ring. It is not hard to see that $\overline{R} \subseteq K_{CR}$ (\overline{R} is algebraically closed at each point of $S_{\overline{R}} = \text{Spec}(\overline{R})$ and since $S_{\overline{R}}$ is compact, \overline{R} is integrally closed). \overline{R} is a free closure of R in the sense that if $R \subseteq R_1 \subseteq K_{CR}$, then there is a homomorphism of \overline{R} into R_1 over R—in fact one of the projections will do.

Suppose that R has a prime integral closure \overline{R}. Let $\nu: \overline{R} \to \overline{R}$ be a fixed embedding over R. For each $\beta \in \overline{R}$ there is a finite set $X_\beta \subseteq \{ x_p | p \in \mathcal{P} \} \subseteq \overline{R}$ such that $\nu(\beta) \subseteq R[x_p | x_p \in X_\beta]$. If $A \subseteq \overline{R}$, define $A' \subseteq \overline{R}$ as follows: $A_0 = A$, $A_{i+1} = \{ \text{all roots in } \overline{R} \text{ of polynomials } p(x) \in R[x] \text{ such that } x_p \in \bigcup \beta \in A_i X_\beta \}$ and $A' = \bigcup \omega A_i$. Notice that if $p(x) \in R[x]$, then all the roots of $p(x)$ in \overline{R} are generated by a finite number of roots over R, since $S_{\overline{R}} = S_R$. It follows that if $A \subseteq \mathfrak{M}_0$, then $R[A']$ is countably generated over R and, in fact, if $A \subseteq B$ with $B - A$ countable, then $R[B']$ is countably generated over $R[A']$.

Let $\overline{R} = \{ x_\alpha | \alpha < \lambda \}$ where each x_α is a root of a polynomial $p(x) \in \mathcal{P}$. Define $A_\alpha = \{ \{ x_\alpha | \alpha \leq \alpha \} \}$. If $R = R[A'] \subseteq \overline{R}$ and $\overline{R}_\alpha = \{ x_p \in \overline{R} | a \text{ is a root of } p(x) \text{ for some } a \in \overline{R}_\alpha \}$.
It is clear that $R_\alpha = \psi^{-1}(\bar{R}_\alpha)$, that $R_\delta = \bigcup_{\alpha \leq \delta} R_\alpha$ for limit ordinals $\delta \leq \lambda$, that $\bar{R}_\lambda = R$ and that $R_{\alpha+1}$ is countably generated over R_α.

Lemma 1. (i) R_α is prime over R.
(ii) $R_{\alpha+1}$ is prime over R_α.
(iii) $R_{\alpha+1}$ is sequentially prime over R_α.

Proof. (i) is trivial.
(ii) Since R_α is free over R there is a projection $\mu: \bar{R}_\alpha \rightarrow R_\alpha$ over R. It is easy to see that $\mu \circ \nu$ is an automorphism of R_α. Let $\mathcal{S}' = \text{Ker}(\mu) \subset \bar{R}_\alpha$ and let $\mathcal{S} = \mathcal{S}' \bar{R}$. Then since R and \bar{R}_α are models of K_{CR}, $\mathcal{S} \cap \bar{R}_\alpha = \mathcal{S}'$. Also $\mu: \bar{R}_\alpha / \mathcal{S}' \rightarrow R_\alpha$ is an isomorphism. It is easy to see that \bar{R} / \mathcal{S} is free over $R_\alpha = \bar{R}_\alpha / \mathcal{S}'$ (in the same sense that R is free over R). Let $R_\alpha \subset R_2 \models K_{CR}$. Then there is a homomorphism $\mu_1: \bar{R} / \mathcal{S} \rightarrow R_2$ over R_α so that $\mu_1 \circ \nu: R \rightarrow R_2$ is an embedding. Hence R (and thus $R_{\alpha+1}$) is prime over R_α. Hence, since $R_{\alpha+1}$ is countably generated over R_α, by the remark following Theorem 2 of [1], $R_{\alpha+1}$ is sequentially prime over R_α, and (ii) and (iii) are proved.

Corollary. If \bar{R} is a prime integral closure of $R \models K_{CR}$, then \bar{R} is sequentially prime over R.

Proof. The results of [1] show that $\bar{R} \models T$. The inseparable closure R_ι of R is always sequentially prime over R and $R_\iota \models T$ so the above construction and Lemma 1 show that \bar{R} is sequentially prime over R_ι.

Lemma 2. If \bar{R} is the prime integral closure of R, then R is thin.

Proof. Let $\bar{R} = \bigcup_{\alpha < \lambda} R_\alpha$ where $R_{\alpha+1} = R_\alpha[\alpha_\iota]$ and $p_\alpha(\alpha_\iota) = 0$ with $p_\alpha(x) \in R_\alpha[x]$ irreducible. Let $p_\alpha^*(x) \in \bar{R}[x]$ be the unique irreducible polynomial in $\bar{R}[x]$ such that $p_\alpha(x)|p_\alpha^*(x)$. Without loss of generality we may assume that $p_\alpha(x)$ and $p_\alpha^*(x)$ are normal (see the proof of Lemma 1). A set $A \subset \bar{R} - R$ is called downwardly closed if: (i) if $a \in R[A]$ and at some point $z \in S_R$ the first time $a(z)$ occurs in the sequence \bar{R}_γ / z is at stage α with $a(z)$ being a combination over R of $a_{1\iota}, \ldots, a_{n\iota}$ say, then $a_{1\iota} \in R[A]$ for $i = 1, \ldots, n$; and (ii) $A = A'$. In the proof of Lemma 1 we saw that if $A = A'$, then $R[A] \models T$, so if A is downwardly closed then $R[A] \models T$. For each downwardly closed $A \subset \bar{R}$ let Y_A^α be a factoring of p_α^* into irreducible factors in $R[A]$. Call two such factorings Y_A^α and $Y_A^{\alpha'}$ essentially different if at some point $z \in S_R$ they are different. We now claim that for fixed α there are only finitely many essentially different Y_A^α's (with A downwardly closed). This follows from the fact that p_α^*, factors only finitely often in the well-ordered sequence \bar{R}_γ since each $R_\gamma \models T$, and that S_R is compact. We leave the details to the reader. For each α choose idempotents $e_{\alpha,i}, i = 1, \ldots, n_\alpha$ such that for any downwardly closed A each $p_\alpha^*(x)e_{\alpha,i}$ factors into monic irreducible factors on $e_{\alpha,i}$ for each i. Let

$$\mathcal{P} = \{ p_\alpha^*(x)e_{\alpha,i} | \alpha < \lambda, i = 1, \ldots, n_\alpha \}.$$

Certainly \mathcal{P} satisfies all the conditions of definition (5) except perhaps (d). Let $A \subset \mathcal{P}$ with $A = S_0$ and let B_1 be the downward closure of A (defined as follows: For each $a \in R[A] - R$ and each $z \in S_R$, adjoin to A the elements
$a_{\gamma_1}, \ldots, a_{\gamma_n}$ defined above. Since S_R is compact, this will only involve considering a finite number of z's. Call the new set D. Let $A_1 = D'$. Obtain A_{i+1} from A_i in the same way that A_1 was obtained from A. The downward closure of A is $\bigcup_{i<\omega} A_i$). We must show that there is a countable subset $B \subset B_1$ such that adjoining roots for all polynomials in B (in the prime way) causes every polynomial in B_1 to split. Since R is separable over R for each $\{a_1, \ldots, a_n\} \subset R$ there are essentially only finitely many regular rings between R and $R[a_1, \ldots, a_n]$. By this we mean that there is a finite set of regular rings $R_j, j = 1, \ldots, k$, with $R_j \subset R[a_1, \ldots, a_n]$ and R_j finitely generated over R such that at each point $z \in S_R$, if R_z denotes the field (i.e. stalk) above z, then all the fields between R_z and $R[a_1, \ldots, a_n]$ occur among the R_j. For each $\{a_1, \ldots, a_n\} \subset A$ we can look at the rings R_j defined as above and choose a finite set of generators A_j for R_j over R. Let \bar{A} be the union of all these A_j for all finite subsets $\{a_1, \ldots, a_n\}$ of A. Then \bar{A} is countable and in obtaining D from A as above instead of considering all elements of $R[A] - R$ we need only consider all elements of \bar{A}. Call this set \bar{D}. Let $A_1 = \bar{D}'$ etc. and $B = \bigcup_{i<\omega} A_i$. Then B is countable and downwardly closed. In fact $R[B] = R$ [downward closure of A]. From the definition of \mathfrak{p} it is clear that B has the required properties.

Lemma 3. If $R \subset R_1 \subset R_2$ with $R_1 \not\cong T$ and $R_j (j = 1, 2)$ prime over R then R_2 is prime over R_1.

Proof. Let \bar{R}_1 be constructed from R_1 as above. We then have

$$
\begin{array}{ccc}
R & \subset & R_1 \\
\subset & \phi & \subset \\
\cap & \cap & \cap \\
\downarrow & \downarrow & \downarrow \\
\bar{R}_1 & \bar{R}_2
\end{array}
$$

Proof. Let \mathfrak{p} be a thin basis for R. Let $A \subset \mathfrak{p}$. Then there is a B ($A \subset B \subset \mathfrak{p}$) with $\bar{A} + \mathfrak{N}_0 = \bar{B} + \mathfrak{N}_0$ so that every $p \in \mathfrak{p}$ factors in R_B (obtained by adjoining roots of polynomials in B) into the product of irreducible monic factors on e_p.

We prove by induction on A that if $A \subset \mathfrak{p}$, then there is a sequentially prime extension R_A of R which splits every polynomial in A and with $R_A \not\cong T$, and such that in $R_A[x]$ every polynomial $p \in \mathfrak{p}$ factors into the product of monic irreducible factors on e_p. If A is countable this is trivial. Suppose the assertion is true for all cardinals $< \bar{A}$. Let B correspond to A as above. Write $A = \bigcup_{\alpha<\lambda} A_\alpha$ with $A_\delta = \bigcup_{\alpha<\delta} A_\alpha$ for limit ordinals $\delta \leq \lambda$, $A_{\alpha+1} \subset A_\alpha$ and $\bar{A}_\alpha < \bar{A}$ for all $\alpha < \lambda$. Let $B = \bigcup_{\alpha<\lambda} B_\alpha$ with B_α corresponding to A_α as above. Then by induction R_{B_α} exists for each $\alpha < \lambda$. It is clear that $R_{B_\alpha} \not\cong T$ (since in R_{B_α} every polynomial in \mathfrak{p} factors into a product of monic irreducible factors) for each $\alpha < \lambda$. Thus by Lemma 3, $R_{B_{\alpha+1}}$ is prime over R_{B_α} and hence $R_B = \bigcup_{\alpha<\lambda} R_{B_\alpha}$ is prime over R.

From Corollary 1 and Lemma 4 we immediately get the

Theorem. If $R \not\cong K_{CR}$ then R has a prime integral closure if and only if R is thin.
where \(\varphi \) is an embedding of \(R_2 \) into \(\overline{R}_1 \) over \(R \) which exists because \(R_2 \) is prime over \(R \). This diagram need not commute, but we do have \(\nu(r) = \varphi(r) \) for \(r \in R \). We shall show that there exists an automorphism \(\psi \) of \(\overline{R}_1 \) over \(R \) such that the above diagram with \(\varphi \) replaced by \(\psi^{-1} \circ \varphi \) does commute. The lemma then follows from the freeness properties of \(\overline{R}_1 \) over \(R_1 \).

\(\overline{R}_1 \) is generated by the \(x_p, p \in \mathcal{P}, \) over \(R_1 \). For \(a \in R_1 \) let \(a_i, i = 1, \ldots, n_a, \) denote the conjugates of \(a \) over \(R \), and for \(p(x) \in \mathcal{P} \) let \(p_i(x), i = 1, \ldots, n_p, \) denote the conjugates of \(p(x) \) over \(R \). Notice that if \(p(x) \in \mathcal{P} \), then \(p_i(x) \in \mathcal{P} \), and since \(R_1 \models T, (p_i(x), p_j(x)) = 1 \) for \(i \neq j \).

For \(a \in R_1 \) we have \(\varphi(a) = \sum a_i e_i \) where the \(e_i \) are disjoint idempotents of \(\overline{R}_1 \) and \(\sum e_i = 1 \). Similarly we have \(\varphi(p(x)) = \sum_{i=1}^{n_p} p_i(x)e_i. \)

Define \(\psi: \overline{R}_1 \to \overline{R}_1 \) as follows:

\[
\psi(a) = \varphi \circ \nu^{-1}(a) \quad \text{for} \quad a \in \nu(R_1),
\]

\[
\psi(x_p) = \sum_{i=1}^{n_p} x_{p_i} e_i.
\]

It is obvious that \(\psi \) is a homomorphism because of the freeness properties of \(\overline{R}_1 \) over \(R_1 \). \(\psi \) is locally one-to-one (i.e. on each stalk) and hence one-to-one. Also \(x_p \in \text{Range}(\psi) \) so \(\psi \) is onto. Therefore \(\psi \) is an automorphism with the required properties.

Lemma 4. If \(R \) is thin, then \(R \) has a prime integral closure.

Remark. The condition that \(R \) be thin is not a first order condition since every countable model of \(T \) is thin. Hence for \(R \) uncountable the necessary and sufficient condition for \(R \) to have a prime integral closure is not first order, while for countable \(R \) it is.

References

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907