A compactness condition for solutions of ordinary differential equations

Author:
L. K. Jackson

Journal:
Proc. Amer. Math. Soc. **57** (1976), 89-92

MSC:
Primary 34B15

DOI:
https://doi.org/10.1090/S0002-9939-1976-0404743-1

MathSciNet review:
0404743

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proven that a sequence of solutions of with uniformly bounded on a compact interval has a bounded total variation sequence provided solutions of the differential equation extend and -point boundary value problems have at most one solution.

**[1]**A. Lasota and Z. Opial,*On the existence and uniqueness of solutions of a boundary value problem for an ordinary second-order equation*, Colloq. Math.**18**(1967), 1-5. MR**36**#2871. MR**0219792 (36:2871)****[2]**L. K. Jackson and K. Schrader,*Existence and uniqueness of solutions of boundary value problems for third order differential equations*, J. Differential Equations**9**(1971), 46-54. MR**42**#4813. MR**0269920 (42:4813)****[3]**K. Schrader and P. Waltman,*An existence theorem for nonlinear boundary value problems*, Proc. Amer. Math. Soc.**21**(1969), 653-656. MR**39**#533. MR**0239176 (39:533)****[4]**P. Hartman,*On -parameter families and interpolation problems for nonlinear ordinary differential equations*, Trans. Amer. Math. Soc.**154**(1971), 201-226. MR**46**#435. MR**0301277 (46:435)****[5]**P. Waltman,*Existence and uniqueness of solutions of boundary value problems for two dimensional systems of nonlinear differential equations*, Trans. Amer. Math. Soc.**153**(1971), 223-239. MR**42**#3347. MR**0268450 (42:3347)****[6]**L. Shampine,*Existence and uniqueness for nonlinear boundary value problems*, J. Differential Equations**5**(1969), 346-351. MR**39**#534. MR**0239177 (39:534)****[7]**G. Klaasen,*Existence theorems for boundary value problems for th order ordinary differential equations*, Rocky Mountain J. Math.**3**(1973), 457-472. MR**0357944 (50:10409)****[8]**-,*Continuous dependence for -point boundary value problems*, SIAM J. Appl. Math.**19**(1975), 99-102.**[9]**P. Hartman,*Ordinary differential equations*, Wiley, New York, 1964. MR**30**#1270. MR**0171038 (30:1270)****[10]**E. Hewitt and K. Stromberg,*Real and abstract analysis. A modern treatment of the theory of functions of a real variable*, Springer-Verlag, New York, 1965. MR**32**#5826. MR**0188387 (32:5826)****[11]**A. E. Taylor,*General theory of functions and integration*, Blaisdell, Waltham, Mass., 1965. MR**31**#2358. MR**0178100 (31:2358)****[12]**K. Schrader,*A generalization of the Helly selection theorem*, Bull. Amer. Math. Soc.**78**(1972), 415-419. MR**45**#8788. MR**0299740 (45:8788)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34B15

Retrieve articles in all journals with MSC: 34B15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0404743-1

Keywords:
Boundary value problem,
total variation,
Kamke Convergence Theorem,
Green's function,
Schauder-Tychonoff Theorem

Article copyright:
© Copyright 1976
American Mathematical Society