A remark on irreducible spaces

Author:
J. C. Smith

Journal:
Proc. Amer. Math. Soc. **57** (1976), 133-139

MSC:
Primary 54D20

MathSciNet review:
0405353

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A topological space is called irreducible if every open cover of has an open refinement which covers minimally. In this paper we show that weak -refinable spaces are irreducible. A modification of the proof of this result then yields that -compact, weak -refinable spaces are Lindelöf. It then follows that perfect, -compact weak -refinable spaces are irreducible. A number of known results follow as corollaries.

**[1]**G. Aquaro,*Point countable open coverings in countably compact spaces*, General Topology and its Relations to Modern Analysis and Algebra. II (Proc. Second Prague Topological Sympos. 1966), Academia, Prague, 1967, pp. 39-41.**[2]**Richard Arens and J. Dugundji,*Remark on the concept of compactness*, Portugaliae Math.**9**(1950), 141–143. MR**0038642****[3]**C. E. Aull,*A generalization of a theorem of Aquaro*, Bull. Austral. Math. Soc.**9**(1973), 105–108. MR**0372817****[4]**H. R. Bennett and D. J. Lutzer,*A note on weak 𝜃-refinability*, General Topology and Appl.**2**(1972), 49–54. MR**0301697****[5]**R. H. Bing,*Metrization of topological spaces*, Canadian J. Math.**3**(1951), 175–186. MR**0043449****[6]**James R. Boone,*On irreducible spaces*, Bull. Austral. Math. Soc.**12**(1975), 143–148. MR**0400162****[7]**James R. Boone,*On irreducible spaces. II*, Pacific J. Math.**62**(1976), no. 2, 351–357. MR**0418037****[8]**Dennis K. Burke,*A note on R. H. Bing’s Example 𝐺*, Topology Conference (Virginia-Polytech. Inst. and State Univ., Blacksburg, Va., 1973) Springer, Berlin, 1974, pp. 47–52. Lecture Notes in Math., Vol. 375. MR**0375230****[9]**Upton J. Christian,*A note on the relation between Lindelöf and ℵ₁-compact spaces*, Comment. Math. Prace Mat.**16**(1972), 215–217. MR**0322803****[10]**U. J. Christian,*Concerning certain minimal cover refineable spaces*, Fund. Math.**76**(1972), no. 3, 213–222. MR**0372818****[11]**J. C. Smith,*Properties of weak 𝜃-refinable spaces*, Proc. Amer. Math. Soc.**53**(1975), no. 2, 511–517. MR**0380731**, 10.1090/S0002-9939-1975-0380731-8**[12]**J. M. Worrell Jr. and H. H. Wicke,*Characterizations of developable topological spaces*, Canad. J. Math.**17**(1965), 820–830. MR**0182945**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54D20

Retrieve articles in all journals with MSC: 54D20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0405353-2

Keywords:
Metacompact,
-refinable,
weak -refinable,
-refinable,
weak -refinable,
-compact,
compact,
countably compact,
Lindelöf,
minimal cover,
irreducible,
maximal distinguished set,
perfect

Article copyright:
© Copyright 1976
American Mathematical Society