THE LARGEST PROPER VARIETY OF LATTICE ORDERED GROUPS

W. CHARLES HOLLAND

Abstract. If a lattice ordered group G satisfies any identical relation, other than those satisfied by every lattice ordered group, then G is normal valued, and hence satisfies the relation $ab \leq b^2a^2$ for all $a, b \geq e$.

A lattice ordered group (l-group) G is said to be normal valued if whenever M is a convex l-subgroup maximal with respect to missing a fixed element $g \in G$, and K the smallest convex l-subgroup of G containing M and g, then M is a normal subgroup of K. It was shown by Wolfenstein [5] that the normal valued l-groups are characterized by the property that $ab \leq b^2a^2$ for all $a, b \geq e$, and thus constitute a variety, or equationally defined class (the inequality is equivalent to the equation $|x||y||x^{-2}\vee y^{-2} \vee e = e$, where $|z| = (z \vee z^{-1})$). It has been observed that the variety of normal valued l-groups is very large; all of the many varieties studied by Martinez [2] are contained in the normal valued variety (with the exception of the variety of all l-groups). It will be shown here that every property variety of lattice ordered groups is contained in the normal valued variety. This sheds a new light on several of Martinez's results, and shows that certain l-groups are generic. For example, if $A(R)$ denotes the l-group of all order preserving permutations of the real line, and if $A(R)$ satisfies an identical relation, then every l-group must satisfy that relation.

Theorem. If a lattice ordered group G satisfies an identical relation which is not satisfied by every lattice ordered group, then G is normal valued.

The Theorem will be proved in a sequence of lemmas.

If an l-group H is an l-subgroup of the l-group $A(S)$ of all order preserving permutations of a totally ordered set S, H is said to be o-2-transitive on S if whenever $s_1 < s_2, t_1 < t_2$ are members of S, there exists $h \in H$ such that $s_1h = t_1$. It follows easily that any such H must in fact be o-n-transitive in the sense that whenever $s_1 < s_2 < \cdots < s_n, t_1 < t_2 < \cdots < t_n$ are members of S, there exists $h \in H$ such that $s_ih = t_i$ [4, Lemma 4]. Again, H is said to be o-primitive on S if H acts transitively on S and the stabilizer subgroups $H_s = \{h \in H | sh = s\}$ are maximal convex l-subgroups. Finally, H is periodic on S if H is transitive on S and there is a period $f \in A(S)$, where S is the Dedekind completion of S, such that $fh = hf$ for all $h \in H$, where $H \subseteq A(S)$.

Received by the editors January 27, 1975.

Key words and phrases. Lattice ordered group, variety, normal valued.

© American Mathematical Society 1976
in the natural way, and \(f \) has coterminus orbits. It was shown by McCleary [3] that if \(H \) is \(o \)-primitive on \(S \) then either \(H_s = \{e\} \) for every \(s \in S \), or \(H \) is \(o \)-2-transitive on \(S \), or \(H \) is periodic on \(S \). In the latter case, \(H \) acts faithfully and \(o \)-2-transitively on the interval \((s, sf)\) of \(S \), where \(f \) is the period, and \(s \) is any member of \(S \).

Lemma 1. If the \(l \)-subgroup \(H \) of \(A(S) \) is \(o \)-primitive on \(S \) but \(H_s \neq \{e\} \) for some \(s \in S \), then \(H \) contains an \(l \)-subgroup which is \(o \)-2-transitive on some totally ordered set.

Now suppose that \(G \) is an \(l \)-group which is not normal valued. There exists, then, a convex \(l \)-subgroup \(M \) of \(G \), maximal with respect to missing some element \(g \in G \), such that \(M \) is not a normal subgroup of its cover \(K \). The intersection \(\cap k^{-1} Mk \) of all the conjugates of \(M \) in \(K \) is an \(l \)-ideal of \(K \), and the \(l \)-group \(H = K/\cap k^{-1} Mk \) is \(l \)-isomorphic to an \(o \)-primitive \(l \)-subgroup of order preserving permutations of the totally ordered set \(S \) of right cosets of \(M \) in \(K \). In this representation, \(H_s = M \) for some \(s \in S \), and so \(H_s \neq \{e\} \) since \(M \) is not normal in \(K \). By Lemma 1, \(H \) contains an \(l \)-subgroup which is \(o \)-2-transitive on some set. This subgroup must belong to any variety that contains \(G \). Thus:

Lemma 2. If \(G \) is an \(l \)-group which is not normal valued, then every variety containing \(G \) contains an \(l \)-group which is an \(o \)-2-transitive \(l \)-group of order preserving permutations of some totally ordered set.

Let \(X \) be a countably infinite set of letters and \(X^{-1} = \{x^{-1} | x \in X \} \) a set disjoint from \(X \). Let \(F \) be the free \(l \)-group on \(X \). The elements of \(F \) may be written in the form \(\forall_A \land_B \Pi_{\Gamma} x_{(\alpha, \beta, \gamma)} \) where \(A, B, \Gamma \) are finite index sets, \(\Gamma = \{1, 2, \ldots, n\} \), \(x_{(\alpha, \beta, \gamma)} \in X \cup X^{-1} \cup \{e\} \), \(\Pi \) indicates the group operation, and \(\lor \) and \(\land \) the lattice operations. There is, in general, nothing unique about the form of a given element of \(F \). An identical relation is, then, a formal expression \(w = e \), where \(w \in F \). An \(l \)-group \(H \) is said to satisfy the identical relation \(w = e \), where \(w \) has the form above, if for every substitution \(x_{(\alpha, \beta, \gamma)} \mapsto h_{(\alpha, \beta, \gamma)} \) by elements of \(H \), we have \(e = \forall_A \land_B \Pi_{\Gamma} h_{(\alpha, \beta, \gamma)} \), where it is understood that if \(h \) is substituted for one occurrence of \(x \), \(h \) must also be substituted for all other occurrences of the same \(x \), \(h^{-1} \) for \(x^{-1} \), and \(e \) (in \(H \)) for \(e \) (in \(F \)), and \(\lor, \land \) indicate the lattice and group operations in \(H \).

Lemma 3. Let \(H \) be a nontrivial \(o \)-2-transitive \(l \)-group of order preserving permutations of a totally ordered set \(S \), and \(w \in F \) not the identity element of the free \(l \)-group \(F \). Then \(H \) does not satisfy the identical relation \(w = e \).

To prove Lemma 3, it may first be assumed that \(F \) is an \(l \)-group of order preserving permutations of a totally ordered set \(T \) [1]. There must exist a point \(t \in T \) such that \(tw \neq t \). Let \(w = \forall_A \land_B \Pi_{\Gamma} x_{(\alpha, \beta, \gamma)}, \Gamma = \{1, 2, \ldots, n\} \). For each \((\alpha, \beta) \in A \times B \), define \(t(\alpha, \beta, 0) = t \), and for \(1 \leq \gamma \leq n \), \(t(\alpha, \beta, \gamma) = t(\alpha, \beta, \gamma - 1) x_{(\alpha, \beta, \gamma)} \). Now for each \(x \in X \) occurring in \(w \), and each \((\alpha, \beta) \), let \(P_{(\alpha, \beta)}(x) = \{\gamma | x = x_{(\alpha, \beta, \gamma)} \} \) and \(N_{(\alpha, \beta)}(x) = \{\gamma | x^{-1} = x_{(\alpha, \beta, \gamma)} \} \). Then if \(\gamma \in P_{(\alpha, \beta)}(x), t(\alpha, \beta, \gamma - 1)x = t(\alpha, \beta, \gamma) \), while if \(\gamma \in N_{(\alpha, \beta)}(x), t(\alpha, \beta, \gamma)x = t(\alpha, \beta, \gamma - 1). \)

The set \(T' = \{(\alpha, \beta, \gamma) | (\alpha, \beta) \in A \times B, 0 \leq \gamma \leq n \} \) is a finite subset of \(T \). Now choose and label any subset \(\{s(\alpha, \beta, \gamma) | (\alpha, \beta) \in A \times B, 0 \leq \gamma \leq n \} \) of \(S \).
in one-to-one correspondence with \(T' \), so that the correspondence \(t(\alpha, \beta, \gamma) \leftrightarrow s(\alpha, \beta, \gamma) \) preserves order. Since multiplication by \(x \) provides a one-to-one order preserving correspondence such that

\[
\begin{align*}
 t(\alpha, \beta, \gamma - 1) &\mapsto t(\alpha, \beta, \gamma) \quad \text{for} \ \gamma \in P_{\alpha \beta}(x), \\
 t(\alpha, \beta, \gamma) &\mapsto t(\alpha, \beta, \gamma - 1) \quad \text{for} \ \gamma \in N_{\alpha \beta}(x),
\end{align*}
\]

it follows that the correspondence

\[
\begin{align*}
 s(\alpha, \beta, \gamma - 1) &\mapsto s(\alpha, \beta, \gamma) \quad \text{for} \ \gamma \in P_{\alpha \beta}(x), \\
 s(\alpha, \beta, \gamma) &\mapsto s(\alpha, \beta, \gamma - 1) \quad \text{for} \ \gamma \in N_{\alpha \beta}(x)
\end{align*}
\]

must also be one-to-one and order preserving. As \(H \) is \(0 \)-transitive on \(S \), \(H \) is also \(0 \)-transitive, and hence there exists \(h(x) \in H \) such that

\[
\begin{align*}
 s(\alpha, \beta, \gamma - 1)h(x) &\mapsto s(\alpha, \beta, \gamma) \quad \text{for} \ \gamma \in P_{\alpha \beta}(x), \\
 s(\alpha, \beta, \gamma)h(x) &\mapsto s(\alpha, \beta, \gamma - 1) \quad \text{for} \ \gamma \in N_{\alpha \beta}(x).
\end{align*}
\]

Since \(t = t(\alpha, \beta, 0) \) for each \((\alpha, \beta) \), we may let \(s = s(\alpha, \beta, 0) \). Then substituting \(x \mapsto h(x) \) (and \(x^{-1} \mapsto (h(x))^{-1}, e \mapsto e \)), we have for each \((\alpha, \beta) \in A \times B \),

\[
s_{\prod \Gamma} h(x_{\alpha \beta}) = s(\alpha, \beta, n).
\]

Since \(tw \neq t \),

\[
t \neq t \land \bigwedge_B \prod \Gamma x_{\alpha \beta} = \bigwedge_A \bigwedge_B \bigwedge \prod \Gamma x_{\alpha \beta} = \bigwedge_A \bigwedge_B t(\alpha, \beta, n),
\]

where on the right side of the equation, the lattice operations are taken on the finite chain \(\{t(\alpha, \beta, n)\} \), which is in one-to-one order preserving correspondence with the chain \(\{s(\alpha, \beta, n)\} \). It follows that

\[
s_{\land A} \land \bigwedge_B \prod \Gamma h(x_{\alpha \beta}) = s_{\land A} \land B \prod \Gamma h(x_{\alpha \beta}) = s_{\land A} \land B s(\alpha, \beta n) \neq s.
\]

Hence \(\land \land B \prod \Gamma h(x_{\alpha \beta}) \neq e \) in \(H \), and \(H \) fails to satisfy the identical relation \(w = e \), proving Lemma 3.

Now to prove the Theorem, let \(G \) be an \(l \)-group which is not normal valued and let \(w = e \) be an identical relation which is not satisfied by every \(l \)-group. By Lemma 2, any variety containing \(G \) must contain an \(l \)-group \(H \) which is \(0 \)-transitive on some totally ordered set. By Lemma 3, \(H \) fails to satisfy \(w = e \), and hence so does \(G \).

Corollary. The variety of normal valued \(l \)-groups is the largest proper variety of \(l \)-groups and contains every other proper variety of \(l \)-groups.

In [2], Martinez showed that the variety \(\mathcal{L} \) of all \(l \)-groups is finitely join irreducible in the lattice of varieties of \(l \)-groups. But a much stronger statement is now obvious.

Corollary. The variety \(\mathcal{L} \) of all \(l \)-groups is completely join irreducible in the lattice of varieties of \(l \)-groups.
Corollary (Martinez [2]). The variety of normal valued l-groups is idempotent.

For a proof, it suffices to produce an l-group which is not an extension of a normal valued l-group by a normal valued l-group. The l-group $B(R)$ of all order-preserving permutations of the real line R having bounded support is l-simple [1] and not normal valued, and so serves this purpose.

The free l-group on a countable set is generic in the sense that it generates the variety of all l-groups. A much more tractable example is given by

Corollary (to Lemma 3). The l-group $A(R)$ of all order-preserving permutations of the real line is generic—if $A(R)$ satisfies a certain identical relation, every l-group satisfies that relation.

References

Department of Mathematics, Bowling Green State University, Bowling Green, Ohio 43403