THE SIGNATURE AND ARITHMETIC GENUS
OF CERTAIN ASPHERICAL MANIFOLDS

F. THOMAS FARRELL

Abstract. In this paper we show that the signature and arithmetic genus of certain aspherical manifolds \(M \) vanish when the center of \(\pi_1 M \) is nontrivial. We make the possibly technical assumption that \(\pi_1 M \) is residually finite.

0. Introduction. Gottlieb [4] has shown that the Euler characteristic of a finite, aspherical polyhedron \(X \) vanishes, provided \(\pi_1 X \) has a nontrivial center. (Recall that \(X \) is aspherical, if \(\pi_i X \) vanishes for all \(i \neq 1 \).)

In this note, we show that the signature of a closed, smooth, aspherical manifold \(M \) vanishes, provided \(\pi_1 M \) has a nontrivial center and is residually finite. (A group \(\Gamma \) is residually finite if, for each \(\gamma \in \Gamma \), there exists a subgroup \(\Delta_\gamma \) with finite index such that \(\gamma \not\in \Delta_\gamma \).) We also prove an analogous result for the arithmetic genus (and the generalized arithmetic genus) of a Kaehler manifold.

The residually finite condition is possibly superfluous, but the author so far has been unable to remove it. (Stallings' paper [7] may be helpful here.) In any event, Malcev [6, Theorem VII] has given the following useful criterion for residual finiteness. Namely \(\Gamma \) is residually finite if, for each \(\gamma \in \Gamma \), there exists a representation \(\varphi: \Gamma \to \text{GL}(n, \mathbb{R}) \) (where \(n \) can vary with \(\gamma \)) such that \(\varphi(\gamma) \) is not the identity matrix.

I wish to thank Robert Hunter and especially Wu-chung Hsiang for many helpful conversations during the preparation of this paper.

1. The signature. We begin by paraphrasing a basic result from [4].

Corollary [4, I.14]. Let \(X \) be a finite, aspherical complex and \(\alpha \) an element in the center of \(\pi_1(X, x_0) \); then there exists a homotopy \(h: X \times [0,1] \to X \) such that

1°. \(h(x, 0) = h(x, 1) = x \) for all \(x \in X \), and

2°. the closed path \(h(x_0, t) \) represents \(\alpha \).

This has the following immediate consequence.

Lemma 1.1. Let \(X \) be a finite, aspherical complex such that \(\pi_1 X \) is residually finite and contains a nontrivial center; then there exists a connected, finite-sheeted,
regular covering space \(f: \overline{X} \to X \) and a covering transformation \(T: \overline{X} \to \overline{X} \) such that \(T \) is homotopic to the identity map but different from it.

Proof. Let \(\alpha \) be a nontrivial element in the center of \(\pi_1(X, x_0) \), \(h \) the homotopy posited in Corollary 1.14 of [4], and \(\Gamma \) a normal subgroup of \(\pi_1(X, x_0) \) with finite index such that \(\alpha \not\in \Gamma \). Then \(f: \overline{X} \to X \) is the regular covering space corresponding to \(\Gamma \) and \(T \) is obtained as follows. Lift \(h \) to a homotopy \(\tilde{h}: \overline{X} \times [0,1] \to \overline{X} \) such that \(\tilde{h}(x,0) = x \) for all \(x \in \overline{X} \), and define \(T \) by the equation \(T(x) = \tilde{h}(x,1) \).

Let \(M^{4n} \) be a connected, closed, smooth, oriented manifold of dimension \(4n \), then the cup-product pairing evaluated on the orientation class of \(M \) defines a symmetric, nondegenerate, bilinear form \(B \) on \(H^{2n}(M, \mathbb{R}) \). Split \(H^{2n}(M, \mathbb{R}) \) as the direct sum of two subspaces \(H^{2n}(M, \mathbb{R}) = H^+ \oplus H^- \) so that \(B \) is positive definite on \(H^+ \) and negative definite on \(H^- \), and recall that the signature of \(M \), \(\text{Sign}(M) \), is defined by

\[
\text{Sign}(M) = \dim H^+ - \dim H^-.
\]

In addition, if \(T: M \to M \) generates a finite group of orientation preserving diffeomorphisms, then \(H^+ \) and \(H^- \) can be constructed to be invariant under the automorphism \(T^* \) of \(H^{2n}(M, \mathbb{R}) \) induced by \(T \). In this case, \(\text{Sign}(T,M) \) is defined by

\[
\text{Sign}(T,M) = \text{Trace}(T^*/H^+ - \text{Trace}(T^*/H^-).
\]

Theorem 1.2. Let \(M^{4n} \) be a closed, smooth, aspherical manifold, then \(\text{Sign}(M) \) vanishes provided \(\pi_1(M) \) is residually finite and contains a nontrivial center.

Proof. Let \(f: M \to M \) and \(T: M \to M \) be the covering space and transformation posited in 1.1, and \(m \) denote the number of sheets of \(f \). Since \(f \) is a degree \(m \), codimension-0 immersion, the Hirzebruch signature theorem [5, Theorem 8.2.2] implies that \(\text{Sign}(M) = m \text{Sign}(M) \). Hence it suffices to show that \(\text{Sign}(M) \) vanishes. By 1.1, \(T^* \) is the identity map, therefore \(\text{Sign}(M) = \text{Sign}(T,M) \). But \(T \) has no fixed points, so an application of the Atiyah-Singer G-signature theorem [2, Theorem 6.12] yields that \(\text{Sign}(T,M) \) vanishes.

2. The arithmetic genus. We start by recalling the definition of the arithmetic genus. Let \(M^n \) be a complex analytic manifold of complex dimension \(n \), and \(\mathbb{A}^k \) denote the \(\mathbb{C} \)-module of global smooth \(\mathbb{C} \)-valued \(k \)-forms on \(M \). Then \(\mathbb{A}^k \) splits as the direct sum \(\mathbb{A}^k = \sum_{p+q=k} \mathbb{A}^{p,q} \) where \(\mathbb{A}^{p,q} \) denotes the \(\mathbb{C} \)-module of global forms of type \((p,q) \) on \(M \). And the exterior derivative \(d \) decomposes as \(d = \partial + \overline{\partial} \), where \(\partial: \mathbb{A}^{p,q} \to \mathbb{A}^{p+1,q} \) and \(\overline{\partial}: \mathbb{A}^{p,q} \to \mathbb{A}^{p,q+1} \). (Here \(\partial \) and \(\overline{\partial} \) are differentiation with regard to the \(z \)-variable and \(\overline{z} \)-variable respectively.) Now for each \(p \),

\[
\mathbb{A}^{p,0} \xrightarrow{\overline{\partial}} \mathbb{A}^{p,1} \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} \mathbb{A}^{p,n}
\]

is a cochain complex whose cohomology we denote by \(H^{p,q} \), and the arithmetic genus \(\chi(M) \) is given by
Theorem 2.1. Let M^n be an aspherical, closed Kaehler manifold, then $\chi_y(M)$ vanishes provided $\pi_1 M$ is residually finite and contains a nontrivial center.

Remark 2.2. Borel and Hirzebruch have obtained some pertinent calculations of $\chi_y(M)$ (hence also $\text{Sign}(M)$) for an important class of aspherical, Kaehler manifolds. (See [5, §22.2] and [3].)

Proof. Let $f: M \to M$ and $T: M \to M$ be the covering space and transformation given by 1.1; then the Riemann-Roch theorem [2, Theorem 4.3] implies that $\chi^p(M) = n \chi_x^p(M)$ where n is the number of sheets of f. Hence it suffices to show that $\chi^p(M)$ vanishes for $p = 0, 1, \ldots, n$. Now the complex analytic map T induces endomorphisms $T_{p,q}$ of $A_{p,q}$ which commute with $\bar{\partial}$ (as well as ∂). Denote the induced endomorphism of $H_{p,q}$ by $H_{p,q}(T)$, and define the pth Lefschetz number $L_p(T)$ by the formula

$$L_p(T) = \sum_{q=0}^{n} (-1)^q \text{trace } H_{p,q}(T).$$

Since T has no fixed points, the holomorphic form of the Atiyah-Bott fixed point theorem [1, formula 4.9] implies that $L_p(T) = 0$. Therefore it remains to show that $\chi^p(M) = L_p(T)$, which is a result of the following.

Lemma 2.3. For all p and q, $H_{p,q}(T)$ is the identity endomorphism.

Proof. Use the Kaehler metric on \overline{M} induced by f to define the complex Laplace-Beltrami operator $\Box: A_{p,q} \to A_{p,q}$ and the real Laplace operator $\Delta: A^k \to A^k$; then $\Delta = 2 \Box$. (See [5, pp. 121–124] for more details.) Because T is an isometry, $T_{p,q}$ commutes with Δ, thus also with \Box, and therefore leaves the kernel of \Box invariant. Since $\ker \bar{\partial} = \ker \Box \oplus \text{image } \delta$, it suffices to show that $T_{p,q}$ restricted to $\ker \Box$ is the identity map. But this is a consequence of the Poincaré lemma, which says that homotopic maps (T and the identity) induce chain homotopic maps on the De Rham complex

$$A^0 \xrightarrow{d} A^1 \xrightarrow{d} \cdots \xrightarrow{d} A^{2n},$$

together with the equations

$$\ker d = \ker \Delta \oplus \text{image } d \quad \text{and} \quad \ker \Delta = \ker \Box.$$
REFERENCES

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802