PRIMITIVE IDEALS IN GROUP RINGS OF POLYCYCLIC GROUPS

ROBERT L. SNIDER

Abstract. If F is a field which is not algebraic over a finite field and G is a polycyclic group, then all primitive ideals of the group ring $F[G]$ are maximal if and only if G is nilpotent-by-finite.

We recall that a primitive ring is a ring with a faithful irreducible module. An ideal is primitive if the factor ring is a primitive ring.

If F is a field algebraic over a finite field and G a polycyclic group, then Roseblade has recently shown that every irreducible module for the group ring $F[G]$ is finite dimensional [5]. This implies that the primitive factor rings are simple Artin. On the other hand, if F is any other field and G is not abelian-by-finite, then Hall observed that $F[G]$ has infinite dimensional irreducible modules [2]. If G is finitely generated nilpotent, Zalesskiï proved that the primitive factor rings are at least simple for any field F [6]. In this paper we offer a converse to Zalesskiï's theorem by proving the

Theorem. If F is a field which is not algebraic over a finite field and G is a polycyclic group, then all primitive ideals of the group ring $F[G]$ are maximal if and only if G is nilpotent-by-finite.

We warn the prospective reader of Zalesskiï's paper [6] that the word "primitive" has been translated as prime throughout.

Lemma 1. If G is polycyclic and H is a subgroup of finite index with all primitive ideals of $F[H]$ maximal, then all primitive ideals of $F[G]$ are also maximal.

Lemma 2. Let G be polycyclic and H a subgroup of finite index in G. If $F[H]$ has a nonmaximal primitive ideal, then $F[G]$ does also.

Proof. By Lemma 1, we may assume H is normal in G. Let P be a primitive ideal of $F[H]$ properly contained in a maximal ideal Q. Let $1 = g_1, g_2, \ldots, g_n$ be a set of coset representatives for H in G. Let $\overline{P} = \bigcap_{i=1}^{n} g_i^{-1}P$ and $\overline{Q} = \bigcap_{i=1}^{n} g_i^{-1}Qg_i^{-1}$. $\overline{P} \subseteq \overline{Q}$ since equality would imply that $P \supseteq g_iQg_i^{-1}$ for some i and hence P would be maximal. Let V be an irreducible $F[H]$ module with annihilator P. $\overline{V} = V \otimes_{F[H]} F[G]$ has finite length as an $F[H]$ module and hence as an $F[G]$ module. Let $0 = W_0 \subseteq W_1 \subseteq \cdots \subseteq W_n = \overline{V}$ be a $F[G]$ composition series for \overline{V}. The annihilator of \overline{V} is $\overline{P}G$. $\overline{Q}G$ is a two-sided ideal
and hence can be embedded in a maximal ideal M. Let $P_i = \text{Ann} \left(\frac{W_i}{W_{i-1}} \right)$. Since $P_n P_{n-1} \cdots P_1$ annihilates V, $P_n P_{n-1} \cdots P_1 \subseteq \overline{FG} \subseteq \overline{QG} \subseteq M$. Hence M contains P_i for some i. Now W_i/W_{i-1} contains a copy of V_{g_j} for some j and hence contains a copy of V_{g_j} for each j. Hence $P_i \cap F[H] = \text{Ann}_{F[H]} \left(\frac{W_i}{W_{i-1}} \right) = \bigcap_{j=1}^n \text{Ann} \left(V_{g_j} \right) = \overline{P}$. Since $M \cap F[H] \supseteq \overline{QG} \cap F[H] = Q$, we have $P_i \subseteq M$ and P_i is a nonmaximal primitive ideal.

Proof of Theorem. If G is nilpotent-by-finite, the result follows from Zalesskiï [6] and Lemma 1. Conversely suppose G is not nilpotent-by-finite. Pick a subgroup K maximal among the subgroups with $N = \cap G(K)$ of finite index and N/K not nilpotent-by-finite. Using Lemma 2, we may assume K is normal. Also since $F[G/K]$ is a homomorphic image of $F[G]$ we assume $K = X$. The finite conjugate subgroup of G is trivial. Otherwise G has a nontrivial normal subgroup H whose centralizer C has finite index. $C/C \cap H \cong CH/H$ is nilpotent-by-finite by the maximality of K. Also $C \cap H$ is central in C and hence C and therefore G is nilpotent-by-finite, a contradiction. Let A be a maximal abelian normal subgroup. G contains a subgroup G_1 of finite index such that A contains a normal subgroup B of G_1 with the property that G_1 and all of its subgroups of finite index act rationally irreducibly on B [5, Lemma 2]. By Lemma 2, we assume $G = G_1$. A is torsion free since G has trivial finite conjugate subgroup. The rank of B is at least two for the same reason. We may clearly replace B with $QB \cap A$. QA is a $Q[G/A]$ module and QB is an irreducible submodule. We claim that QA is an essential extension of QB. Suppose to the contrary that T is a nontrivial $Q[G/A]$ submodule with $T \cap QB = 0$. $T \cap A$ is a nontrivial normal subgroup of G and $G/(T \cap A)$ is nilpotent-by-finite. This is impossible since $G/T \cap A$ contains an isomorphic copy of B and the rank of B is at least two. Again using Lemma 2, we may assume G/B is nilpotent. Let U/QB be an irreducible $Q[G/A]$ submodule of QA/QB. $U \cap A/B$ must intersect the center of G/B nontrivially. Therefore, U/QB must have Q dimension 1. Clearly $\text{Ann} \left(U \right) \subseteq \text{Ann} \left(QB \right)$. If $P_1 = \text{Ann} \left(U/QB \right)$ and $P_2 = \text{Ann} \left(QB \right)$, then $P_1 \neq P_2$ since $Q[G/A]/P_1 \cong Q$ and $Q[G/A]/P_2$ has dimension greater than 1. If $Ann U = Ann QB$, then $P_2 \subseteq P_1$, but this is impossible since each has cofinite dimension and hence are maximal. Therefore, $Ann U \not\subseteq Ann QB$. By [4], there is an $x \neq 0$ in the center of $Q[G/A]/Ann \left(U \right)$ with x in $Ann \left(QB \right)/Ann \left(U \right)$. x induces an isomorphism of U/QB onto QB. But this is impossible. Therefore, we have $QA = QB$ and hence $A = B$. We now show $C(B) = B$. If not, take x in $C(B) - B$ with xB in $Z(G/B) \cap C(B)/B$. Then $D = \langle x, B \rangle$ is an abelian normal subgroup contradicting the maximality of $A = B$. Since F is not algebraic over a finite field, there exists a monomorphism of B into the multiplicative group of F. This defines an $F[B]$ module structure on F. We denote this module by V. Let $P = \text{Ann}_{F[B]} V$. $V = V \otimes_{F[B]} F[G]$ is an irreducible $F[G]$ module. This follows since if g_1 and g_2 are in different cosets of B, then V_{g_1} and V_{g_2} are not isomorphic as $F[B]$ modules since $C[B] = B$. This implies $g_1 P_{g_1}^{-1} \neq g_2 P_{g_2}^{-1}$. Annihilator of V is $(\cap_{g \in G} g P^{-1} g)$. But this is zero by Bergman's theorem [1]. Hence $Ann \left(V \right)$ is a nonmaximal primitive ideal.

The proof can be simplified considerably if F is a large field. More specifically, if the transcendence degree F is larger than the rank of G, a
 theorem of Passman may be applied to produce lots of primitive ideals easily
[3].

REFERENCES

DEPARTMENT OF MATHEMATICS, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY,
BLACKSBURG, VIRGINIA 24061