Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Sur les fonctions de deux variables dont les coupes sont des dérivées


Author: Zbigniew Grande
Journal: Proc. Amer. Math. Soc. 57 (1976), 69-74
MSC: Primary 26A54
DOI: https://doi.org/10.1090/S0002-9939-1976-0419702-2
MathSciNet review: 0419702
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper concerns relationships between the measurability of a function $ f:{I^2} \to R$ (when $ I = \langle 0,1\rangle $ and $ R$ is the set of all real numbers) and its cross sections $ {f_{{x_0}}}(y) = f({x_0},y)$ and $ {f^{{y_0}}}(x) = f(x,{y_0})$. A function $ g:I \to R$ is said to have property $ ({\mathbf{K}})$ if for each measurable set $ A \subset I$ of positive measure the function $ g$ is ponctuellement-discontinue (i.e., the set of continuities is dense) on the closure of the set of all density points of $ A$. The main result is: If a function $ f:{I^2} \to R$ is bounded and each $ {f_x}$ has property $ ({\mathbf{K}})$ and each $ {f^y}$ is a derivative, then $ f$ is Lebesgue measurable.


References [Enhancements On Off] (What's this?)

  • [1] R. O. Davies, Separate approximate continuity implies measurability, Proc. Cambridge Philos. Soc. 73 (1973), 461-465. MR 48 #4216. MR 0325870 (48:4216)
  • [2] Z. Grande, Sur la mesurabilité des fonctions de deux variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 813-816. MR 48 #8736. MR 0330399 (48:8736)
  • [3] -, La mesurabilité des fonctions de deux variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 657-661. MR 0349940 (50:2433)
  • [4] -, Les fonctions qui ont la propriété $ ({\mathbf{K}})$ et la mesurabilité des fonctions de deux variables, Fund. Math. 93 (1976). MR 0432847 (55:5827)
  • [5] -, On measurability of functions of two variables, Proc. Cambridge Philos. Soc. 77 (1975), 335-336. MR 0364587 (51:841)
  • [6] J. S. Lipiński, On measurability of functions of two variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 131-135. MR 46 #9274. MR 0310172 (46:9274)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A54

Retrieve articles in all journals with MSC: 26A54


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0419702-2
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society