RELATING GROUP TOPOLOGIES BY THEIR CONTINUOUS POINTS

KEVIN J. SHARPE

ABSTRACT. Let \(x \) be a point in a topological group \(G \), and for each integer \(n \), let \((1/n)x \) be the set \(\{ y: ny = x \} \) in \(G \). Then I call \(x \) a continuous point if for positive integers \(n \), the subsets \((1/n)x \) are nonvoid and eventually intersect each neighbourhood of the identity 0. I prove the following result and from it three corollaries. Let \(G \) be a divisible abelian group such that \((1/n)0 = \{0\} \) for some integer \(n > 2 \). Suppose there are two group topologies \(\tau_1 \) and \(\tau_2 \) defined on \(G \) and that \(G \) is \(\tau_2 \)-locally compact and \(\sigma \)-compact, and define \(\omega_2 \) to be the outer measure derived from the Haar measure \(\mu_2 \) on \((G, \tau_2) \). Also suppose that the ratio of the \(\tau_2 \)-measure of \(\{nx: x \in A\} \) to the \(\tau_2 \)-measure of \(A \), for any \(\tau_2 \)-Borel-measurable set \(A \) (the ratio is the same for any such \(A \) with finite measure), does not exceed 1. Then for each \(\tau_2 \)-Borel-measurable set \(A \) with nonvoid \(\tau_1 \)-interior, \(\mu_2(A) > \omega_2(W_1) \), \(W_1 \) being the subgroup of all points in \(G \) which are \(\tau_1 \)-continuous.

The study of compact group topologies for the real line gave rise to the rather interesting questions posed by D. N Hawley [1] and answered by me for \(\mathbb{R}^N \) [4]. I propose to present now a generalization of the proofs in [4], something which supplies the basis for the study of what I call the continuous points in a topological group (see [5]). This work forms part of a Ph.D. thesis submitted to La Trobe University in Melbourne, Australia, and was done under the supervision of Dr. Graham Elton.

DEFINITIONS. Let \(G \) be a group (I write my groups additively) and \(A \) a subset of \(G \). It is possible to define two kinds of "\(n \)th-multiples" of the set \(A \):

\[
\begin{align*}
nA &= \{x_1 + x_2 + \cdots + x_n: x_1, x_2, \ldots, x_n \in A\}, \\
\circ nA &= \{nx: x \in A\},
\end{align*}
\]

for \(n \) a positive integer, and

for \(n \) any integer.

An element \(x \) of \(G \) is divisible (in \(G \)) if for each positive integer \(n \) there is a \(y \) in \(G \) satisfying \(x = ny \). If every element of \(G \) is divisible in \(G \), then \(G \) is said to be divisible. To avoid excess of writing, I put \((1/n)x = \{ y: ny = x \} \), and for \(A \) a subset of \(G \), \(\circ(1/n)A = \{ y: ny \in A \} \).

Now consider \(G \) to be a topological group. I call a divisible element \(x \) of \(G \)
a continuous point if the subsets \((1/n)x\), for positive integers \(n\), eventually intersect each neighbourhood of the identity. In other words, if \(A\) is a neighbourhood of the identity and \(x\) is a continuous point, there is a positive integer \(N\) such that for all \(n > N\), \((1/n)x \cap A \neq \emptyset\). I designate the collection of continuous points in \(G\) by \(W\), and if \(G\) is abelian, \(W\) is a subgroup.

Most of this work concerns groups which are divisible and abelian; these I call \(da\) groups for short. I am also concerned with the torsion-free property in that it involves this idea: \(G\) is uniquely \(n\)-th-rooted if \(y_1\) and \(y_2\) in \(G\) are such that \(ny_1 = ny_2\), then \(y_1 = y_2\) \((n\) is a positive integer). If \(G\) is an abelian group, then the uniquely \(n\)-th-rooted property is equivalent to \(G\)'s containing no points, except the identity 0, whose \(n\)-th-multiple is 0. (Note that if \(x\) in \(G\) is uniquely \(n\)-th-rooted, \((1/n)x\) contains at most one point, and I take \((1/n)x\) to be that point.)

First I want to show that \(\circ nA\) and \(\circ (1/n)A\) are Borel (-measurable) for a Borel set \(A\) and a positive integer \(n\).

Lemma 1. If \(G\) is a \(da\) \(\sigma\)-compact locally compact group, then, for each positive integer \(n\), the function \(f_n: x \rightarrow nx\), for all \(x\) in \(G\), is an open and continuous homomorphism of \(G\) onto \(G\).

Proof. That \(f_n\) is continuous follows simply from the definition of a topological group (see [3, p. 96, part A]), and the open property follows from (5.29) in [2, p. 42].

It is true then that, in any topological group, not only translates and inverses of Borel sets are again Borel, but also that the \(n\)-th-multiples of Borel sets are Borel when the group is \(\sigma\)-compact, locally compact and uniquely \(n\)-th-rooted.

To my main train of thought. I want to build up to the fact that for certain groups \(G\) with Haar measure \(\mu\), \(\mu(\circ nA) < \mu(A)\) for a positive integer \(n\) and for all \(A\) in \(\mathcal{M}\), the \(\sigma\)-algebra of all Borel sets. To do this define \(\mu^n\) by \(\mu^n(A) = \mu(\circ nA)\) for all \(A\) in \(\mathcal{M}\). If \(G\) is \(da\), uniquely \(n\)-th-rooted, locally compact and \(\sigma\)-compact, then \(\mu^n\) is a Haar measure on \(G\); for instance

\[
\mu^n(x + A) = \mu(\circ n(x + A)) = \mu(nx + \circ nA) = \mu(\circ nA) = \mu^n(A),
\]

for all \(x\) in \(G\) and \(A\) in \(\mathcal{M}\). But the Haar measure on \(G\) is essentially unique, and so there is a positive real \(c_n\) such that \(\mu^n = c_n \mu\). It can be shown that \(c_n\) is the product of integer powers of the prime factors of \(n\), but more important for this study, it can be shown that \(c_n\) is not dependent on the particular Haar measure chosen for the topology. If \(c_n < 1\), then \(\mu(\circ nA) = \mu^n(A) < \mu(A)\) for all \(A\) in \(\mathcal{M}\), and this would be the case if, for instance, \(G\) contains a compact open subgroup. To summarize these results:

Lemma 2. Let \(G\) be a \(da\), uniquely \(n\)-th-rooted, \(\sigma\)-compact, locally compact group with \(c_n < 1\) for some integer \(n > 2\). Then \(\mu(\circ nA) < \mu(A)\) for all Borel sets \(A\) and for a Haar measure \(\mu\).

Now to my main result.

Theorem 3. Let \(G\) be a \(da\), uniquely \(n\)-th-rooted group for some integer \(n > 2\). Suppose there are two group topologies \(\mathcal{G}_1\) and \(\mathcal{G}_2\) defined on \(G\), such that \((G,
RELATING GROUP TOPOLOGIES BY CONTINUOUS POINTS

N. L. Carvalho

Theorem 3. Let \mathcal{G} be a group, and let τ be a topology on \mathcal{G} such that \mathcal{G} is a Hausdorff space and τ is a Hausdorff topology. Then there is a topology σ on \mathcal{G} such that \mathcal{G} is a Hausdorff space and σ is a Hausdorff topology.

Proof. Let \mathcal{G} be a group and let τ be a topology on \mathcal{G} such that \mathcal{G} is a Hausdorff space and τ is a Hausdorff topology. Then there is a topology σ on \mathcal{G} such that \mathcal{G} is a Hausdorff space and σ is a Hausdorff topology.

Theorem 4. Let \mathcal{G} be a group, and let τ be a topology on \mathcal{G} such that \mathcal{G} is a Hausdorff space and τ is a Hausdorff topology. Then there is a topology σ on \mathcal{G} such that \mathcal{G} is a Hausdorff space and σ is a Hausdorff topology.

Proof. Let \mathcal{G} be a group and let τ be a topology on \mathcal{G} such that \mathcal{G} is a Hausdorff space and τ is a Hausdorff topology. Then there is a topology σ on \mathcal{G} such that \mathcal{G} is a Hausdorff space and σ is a Hausdorff topology.

Theorem 5. Let \mathcal{G} be a group, and let τ be a topology on \mathcal{G} such that \mathcal{G} is a Hausdorff space and τ is a Hausdorff topology. Then there is a topology σ on \mathcal{G} such that \mathcal{G} is a Hausdorff space and σ is a Hausdorff topology.

Proof. Let \mathcal{G} be a group and let τ be a topology on \mathcal{G} such that \mathcal{G} is a Hausdorff space and τ is a Hausdorff topology. Then there is a topology σ on \mathcal{G} such that \mathcal{G} is a Hausdorff space and σ is a Hausdorff topology.

Theorem 6. Let \mathcal{G} be a group, and let τ be a topology on \mathcal{G} such that \mathcal{G} is a Hausdorff space and τ is a Hausdorff topology. Then there is a topology σ on \mathcal{G} such that \mathcal{G} is a Hausdorff space and σ is a Hausdorff topology.

Proof. Let \mathcal{G} be a group and let τ be a topology on \mathcal{G} such that \mathcal{G} is a Hausdorff space and τ is a Hausdorff topology. Then there is a topology σ on \mathcal{G} such that \mathcal{G} is a Hausdorff space and σ is a Hausdorff topology.
Proof. Putting $\mathcal{A}_1 = \mathcal{A}_2$ in Theorem 3 implies that every open set has measure at least the outer measure of the subgroup of continuous points. But by regularity, since a point has zero measure, there are sets open in G with arbitrarily small measures.

Definition. Suppose there are two topologies \mathcal{A}_1 and \mathcal{A}_2 defined on some space X. Then \mathcal{A}_2 is Hawley with respect to \mathcal{A}_1 if, given any \mathcal{A}_2-Borel set, either it or its complement is dense in (X, \mathcal{A}_1).

Corollary 6. Let G be a da, uniquely nth-rooted group for some integer $n > 2$. Suppose there are two group topologies \mathcal{A}_1 and \mathcal{A}_2 defined on G, and \mathcal{A}_2 causes G to be compact. Then \mathcal{A}_2 is Hawley with respect to \mathcal{A}_1 if the subgroup of \mathcal{A}_1-continuous points is not \mathcal{A}_2-negligible.

Proof. In any compact and connected group, a nonnegligible subgroup has outer measure 1. Now by applying Theorem 3 with $c_n = 1$ to our present group, it can be seen that every \mathcal{A}_2-Borel set with nonvoid \mathcal{A}_1-interior must have \mathcal{A}_2-measure 1. Thus the \mathcal{A}_2-measure of G is two times what it should be if an \mathcal{A}_2-Borel set and its complement are both not dense in (G, \mathcal{A}_1).

If \mathcal{A}_2 is Hawley with respect to \mathcal{A}_1 for two topologies \mathcal{A}_1 and \mathcal{A}_2 on some space X, then the only functions from X to a Hausdorff space both \mathcal{A}_1-continuous and \mathcal{A}_2-Borel-measurable are the constant functions. This can be proved in exactly the same way as Theorem 4 in [4]. However, it is not possible to remove the "\mathcal{A}_1-continuous" and make it "\mathcal{A}_2-Borel-measurable" for if (X, \mathcal{A}_1) and (X, \mathcal{A}_2) are Hausdorff spaces and X contains two distinct points x and y, the map $f: X \to \{x, y\}$ defined by $f(x) = x$ and $f(z) = y$ if z is in $\{x\}$, is \mathcal{A}_1 - and \mathcal{A}_2-Borel-measurable, but is not a constant function.

References

5. ———, Continuous points in topological groups (submitted).

Department of Mathematics, La Trobe University, Melbourne, Australia

Current address: Episcopal Divinity School, Cambridge, Massachusetts 02138