Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Generating functions for the Jacobi polynomial


Author: M. E. Cohen
Journal: Proc. Amer. Math. Soc. 57 (1976), 271-275
MSC: Primary 33A65
DOI: https://doi.org/10.1090/S0002-9939-1976-0404725-X
MathSciNet review: 0404725
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two theorems are proved with the aid of operator and series iteration methods. Special cases appear to give new and known generating functions for the Jacobi polynomial.


References [Enhancements On Off] (What's this?)

  • [1] F. Brafman, Generating functions of Jacobi and related polynomials, Proc. Amer. Math. Soc. 2 (1951), 942-949. MR 13, 649. MR 0045875 (13:649i)
  • [2] J. W. Brown, New generating functions for classical polynomials, Proc. Amer. Math. Soc. 21 (1969), 263-268. MR 38 #4734. MR 0236438 (38:4734)
  • [3] -, New generating functions for classical polynomials, Notices Amer. Math. Soc. 16 (1969), 412. Abstract #69T-B29.
  • [4] L. Carlitz, Some generating functions for Laguerre polynomials, Duke Math. J. 35 (1968), 825-827. MR 39 #1700. MR 0240351 (39:1700)
  • [5] M. E. Cohen, On expansion problems: New classes of formulae for the classical functions, SIAM J. Math. Anal. 7 (1976). MR 0442305 (56:691)
  • [6] E. Feldheim, Relations entre les polynomes de Jacobi, Laguerre, et Hermite, Acta Math. 75 (1942), 117-138. MR 7, 65. MR 0012724 (7:65b)
  • [7] H. M. Srivastava, New generating functions for Jacobi and related polynomials, J. Math. Anal. Appl. 41 (1973), 748-752. MR 0326028 (48:4374)
  • [8] -, A class of generating functions for generalized hypergeometric polynomials, J. Math. Anal. Appl. 35 (1971), 230-235. MR 43 #3509. MR 0277776 (43:3509)
  • [9] -, Generating functions for Jacobi and Laguerre polynomials, Proc. Amer. Math. Soc. 23 (1969), 590-595. MR 40 #2935. MR 0249694 (40:2935)
  • [10] G. Szegö, Orthogonal polynomials, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1959. MR 21 #5029.
  • [11] A. Verma, On generating functions of classical polynomials, Proc. Amer. Math. Soc. 46 (1974), 73-76. MR 49 #9276. MR 0344537 (49:9276)
  • [12] D. Zeitlin, A new class of generating functions for hypergeometric polynomials, Proc. Amer. Math. Soc. 25 (1970), 405-412. MR 41 #8719. MR 0264123 (41:8719)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 33A65

Retrieve articles in all journals with MSC: 33A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0404725-X
Keywords: Generating function, series iteration, differential operators, Jacobi polynomial
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society