A CHARACTERIZATION OF MINIMAL HAUSDORFF SPACES

LARRY L. HERRINGTON AND PAUL E. LONG

ABSTRACT. This paper gives a characterization of minimal Hausdorff spaces.

1. Preliminary definitions and theorems. A net $\mathcal{O} \rightarrow X$ r-converges to $x_0 \in X$ if for each open V containing x_0, there exists a $d \in \mathcal{O}$ such that $\mathcal{O}(T_d) \subset \text{cl}(V)$ [2]. A net $\mathcal{O} \rightarrow X$ r-accumulates to $x_0 \in X$ if for each open $V \subset X$ containing x_0 and for every $d \in \mathcal{O}$, $\mathcal{O}(T_d) \cap \text{cl}(V) \neq \emptyset$. Theorem 5 of [1] shows that a Hausdorff space X is minimal Hausdorff if and only if each net in X with a unique r-accumulation point is convergent.

A function $f: X \rightarrow Y$ has a strongly-closed graph if for each $(x,y) \in G(f)$ ($G(f)$ denotes the graph of f) there exist open sets $U \subset X$ and $V \subset Y$ containing x and y, respectively, such that $(U \times \text{cl}(V)) \cap G(f) = \emptyset$ [2]. According to Theorem 7 of [1], each function $f: X \rightarrow Y$ of a topological space X into a minimal Hausdorff space Y with strongly-closed graph is continuous. (Note that Example 3 of [1] shows that the strongly-closed graph condition in Theorem 7 of [1] cannot be relaxed to a closed graph condition.)

2. Main result. Denote by \mathfrak{S} the class of spaces containing the class of Hausdorff completely normal and fully normal spaces [3].

Theorem. A Hausdorff space Y is minimal Hausdorff if and only if for every topological space X belonging to \mathfrak{S}, each function $f: X \rightarrow Y$ with a strongly-closed graph is continuous.

Proof. In view of Theorem 7 of [1], only the sufficiency requires proof. Assume that Y is not minimal Hausdorff. By Theorem 5 of [1] there exists a net $f: \mathcal{O} \rightarrow Y$ with a unique r-accumulation point $q \in Y$ such that f does not converge to q. Let $\infty \not\in \mathcal{O}$ and define $X = \mathcal{O} \cup \{\infty\}$. Then the power set of \mathcal{O} together with $\{T_d \cup \{\infty\}|d \in \mathcal{O}\}$ is a base for a topology σ on X making (X,σ) a fully normal, completely normal Hausdorff space [2], [3]. Define $g: X \rightarrow Y$ by $g|\mathcal{O} = f$ and $g(\infty) = q$. Using the fact that q is the unique r-accumulation point of the net f, it follows that $G(g)$ is strongly-closed. The

Received by the editors October 13, 1975.

Key words and phrases. Minimal Hausdorff spaces, functions with strongly-closed graphs.

1 The concepts of r-convergence and r-accumulation point were first introduced by N. V. Veličko under the names of β-convergence and β-contact point, respectively, in H-closed topological spaces, Mat. Sb. 70 (112) (1966), 98–112.

© American Mathematical Society 1976

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
identity function \(\mathcal{D} \rightarrow \mathcal{D} \) defines a net that converges to \(\infty \). However, since \(f \) does not converge to \(q \), there exists an open set \(V \subset Y \) containing \(q \) with the property that \(g(T_d) \cap (Y - V) \neq \emptyset \) for each \(d \in \mathcal{D} \). Consequently, \(g \) is not continuous at \(x = \infty \). This contradiction establishes the proof.

REFERENCES

DEPARTMENT OF MATHEMATICS AND PHYSICS, UNIVERSITY OF ARKANSAS AT PINE BLUFF, PINE BLUFF, ARKANSAS 71601

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF ARKANSAS AT FAYETTEVILLE, FAYETTEVILLE, ARKANSAS 72701