THE SIGNATURE OF THE FIXED SET OF A MAP OF ODD PERIOD

J. P. ALEXANDER, G. C. HAMRICK AND J. W. VICK

Abstract. Let \(T \) be a diffeomorphism of odd period \(n \) on a closed smooth manifold \(M^{2k} \). The Conner-Floyd analysis of fixed point data and the Atiyah-Singer Index Theorem are applied to prove there exist methods of orienting the components \(F \) of the fixed set of \(T \), depending only on \(n \), so that \(\sum F \text{ sgn } F \equiv \text{ sgn } M \mod 4 \) whenever \(T^* \) is the identity on \(H^k(M; \mathbb{Q}) \). Other special results of this type are obtained when assumptions are made restricting the possible eigenvalues in the normal bundle to the fixed set.

Let \(M^{2n} \) be a closed oriented differentiable manifold and \(T \) an orientation preserving diffeomorphism of \(M \) of period \(k \), \(k \) an odd integer. Denote by \(F \) the fixed point set of \(T \). Our principal result is then

Theorem 1. If \(T^* \) is the identity on \(H^n(M; \mathbb{Q}) \), then there is a systematic orientation for \(F \) so that

\[
\text{sgn}(M) \equiv \text{sgn}(F) \mod 4.
\]

The technique for orienting \(F \) depends only on \(k \) and not on \([T, M]\). This generalizes considerably Corollary 2.11 of [1], and is the best possible result for manifolds of (positive) dimension \(\equiv 0 \mod 4 \). The proof involves the connection between the Atiyah-Singer-Segal G-Signature Theorem [2], [3] and the Conner-Floyd computation of \(\mathfrak{M}_*(\mathbb{Z}_k) \), the bordism algebra of local information for \(\mathbb{Z}_k \) actions [4], [5].

Denote by \(\mathfrak{O}_*(\mathbb{Z}_k) \) the bordism ring of orientation preserving actions of \(\mathbb{Z}_k \) on closed smooth manifolds and by \(\mathfrak{M}_*(\mathbb{Z}_k) \) the bordism ring of actions of \(\mathbb{Z}_k \) on compact oriented smooth manifolds with boundary, having no fixed points on the boundary. \(\mathfrak{M}_*(\mathbb{Z}_k) \) may be given a bundle theoretic interpretation [4] as follows: We consider bordism classes \([(\xi_1, \ldots, \xi_{(k-1)/2}) \to V] \) of ordered \((k-1)/2\)-tuples of complex vector bundles over closed oriented manifolds \(V \). (We allow 0 as a place holder in case \(\xi_r \) is the 0-bundle.) If \(\epsilon: \{1, 2, \ldots, (k-1)/2\} \to \{\pm 1\} \) is a function and \(\mathbb{Z}_k \) acts in \(\xi_r \) by multiplication by \(\lambda^{\epsilon(r)} \), \(\lambda = \exp(2\pi i/k) \), the orientations on the \(\{\xi_r\} \) and on \(V \) induce an orientation on the disk bundle. The action of \(\mathbb{Z}_k \) is fixed point free on the sphere bundle so that the disk bundle gives rise to an element of \(\mathfrak{M}_*(\mathbb{Z}_k) \). In fact this correspondence is an isomorphism of bordism theories.

The homomorphism \(\text{fix}: \mathfrak{O}_*(\mathbb{Z}_k) \to \mathfrak{M}_*(\mathbb{Z}_k) \) is given by \(\text{fix}([T, M]) \).
\[T_F, (N_F, \partial N_F) = \sum_F [T_F, (N_F, \partial N_F)] \] where \(N_F \) is an invariant normal tube around a component \(F \) of the fixed set of \(T \) in \(M \). There is a splitting of the normal bundle of \(F \) into eigenbundles \((\xi_1, \ldots, \xi_{(k-1)/2}) \rightarrow F \) where the eigenvalue for \(\xi_r \) is \(\lambda^{(r)} \) and the orientation on \(F \) is induced by the orientations on the \(\{ \xi_r \} \) and the orientation on \(N_F \) given by \(M \). (Clearly different choices of the function \(\epsilon \) may produce different orientations of \(F \).) Thus

\[[T_F, (N_F, \partial N_F)] = [(\xi_1, \ldots, \xi_{(k-1)/2}) \rightarrow F]. \]

The \(G \)-signature homomorphism \(\sigma: \Theta_*(Z_k) \rightarrow Z(\lambda) \) defined by Atiyah and Singer [3] assigns to the bordism class of an action an algebraic integer that depends only on the fixed point data. This leads to a commutative diagram

\[
\begin{array}{ccc}
\Theta_*(Z_k) & \xrightarrow{\sigma} & Z(\lambda) \\
\downarrow \text{fix} & & \downarrow \\
\mathcal{M}_*(Z_k) & \xrightarrow{\delta} & Z(1/k, \lambda)
\end{array}
\]

In part, the Atiyah-Singer-Segal G-Signature Theorem [2], [3] computes the formula expressing the global invariant \(\sigma[T, M] \) in terms of the fixed point information \(\sigma(\text{fix} [T, M]) \). The image of \(\delta \) is actually contained in the subring of \(Z(\lambda/k) \) given by

\[
S = \left\{ \left(\sum_{i=1}^{(k-1)/2} m_i (\lambda^i + \lambda^{-i}) + \sum_{i=1}^{(k-1)/2} n_i (\lambda^i - \lambda^{-i}) \right) \mid m_i \equiv m_j \mod 2, \right. \\
\left. n_i \equiv n_j \mod 2 \text{ and } m_i, n_i \in Z(1/k) \right\}
\]

and is generated [4] by 1 and

\[
\left\{ c_r = \frac{\lambda^r + 1}{\lambda^r - 1} \mid 1 \leq r \leq \frac{k - 1}{2} \right\}.
\]

Now suppose \(\theta: S \rightarrow Z_4 \) is a ring homomorphism such that \(\theta(1) = 1 \) and \(\theta(c_r) = \pm 1 \) for each \(r \). There is a corresponding function \(\epsilon: \{1, 2, \ldots, (k - 1)/2\} \rightarrow \{\pm 1\} \) given by \(\epsilon(r) = \theta(c_r) \). As noted previously such a function \(\epsilon \) gives rise to a systematic choice of eigenvalues in the normal bundle to a component \(F \) of the fixed set and hence a well-defined orientation of \(F \).

To analyze the composition \(\mathcal{M}_*(Z_k) \xrightarrow{\delta} S \xrightarrow{\theta} Z_4 \) we use the fact that \(\mathcal{M}_*(Z_k) \) is a polynomial algebra over \(\Omega^{SO}_* \) on generators

\[
y_{r,j} = [(0, \ldots, 0, \xi_r, \ldots, 0) \rightarrow CP(j)]
\]

where \(\xi_r \) is the conjugate Hopf bundle and \(Z_k \) acts in \(\xi_r \) by \(\lambda^{(r)} \) [4]. Applying the commutativity of the diagram (2) to the action on \(CP(j + 1) \) given by

\[
T_j[z_0, \ldots, z_{j+1}] = [\lambda^{(r)} z_0, z_1, \ldots, z_{j+1}] \]

we get
\[
\hat{\sigma}(y_{r,j}) = \begin{cases}
[\hat{\sigma}(y_{r,0})]^{j+1}, & \text{j even,} \\
1 - [\hat{\sigma}(y_{r,0})]^{j+1}, & \text{j odd.}
\end{cases}
\]

Now \(\hat{\sigma}[y_{r,0}] = e(r) \cdot c, \) so

\[
\theta(\hat{\sigma}(y_{r,j})) = \begin{cases}
1, & \text{j even,} \\
0, & \text{j odd,}
\end{cases}
\]

which agrees with \(\operatorname{sgn} CP(j).\) Therefore the composite \(\mathfrak{M}_*(Z_k) \xrightarrow{\hat{\sigma}} S \xrightarrow{\theta} Z_4\) is given by

\[
\theta(\hat{\sigma}[(\xi_1, \ldots, \xi_{(k-1)/2}) \to V]) \equiv \operatorname{sgn} V \mod 4.
\]

Hence the commutative diagram

\[
\begin{array}{ccc}
\mathfrak{M}_*(Z_k) & \xrightarrow{\sigma} & S \cap Z(\lambda) \\
\downarrow \text{fix} & & \downarrow \theta \\
\mathfrak{M}_*(Z_k) & \xrightarrow{\hat{\sigma}} & S \\
\end{array}
\]

implies that \(\theta(\sigma[T, M]) = \theta(\hat{\sigma}(\text{fix } [T, M])) = \sum F \operatorname{sgn} F \mod 4.\) When \(T^*\) is the identity on \(H^n(M; Q), \sigma[T, M] = \operatorname{sgn} M.\) Thus Theorem 1 follows from

Proposition 3. There are \(2^{\varphi(k)/2}\) distinct ring homomorphisms \(\theta: S \to Z_4\) such that \(\theta(1) = 1\) and \(\theta(c_r) = \pm 1\) for each \(r.\) (These may not all yield distinct orientations.)

To prove this let \(\beta_i = 2(\lambda^i + \lambda^{-i}), \eta_j = 2(\lambda^j - \lambda^{-j})\) and

\[
Y = \sum_{j=1}^{(k-1)/2} \lambda^j - \lambda^{-j}.
\]

Then \(S\) is generated as a \(Z(1/k)\) module by

\[
\{ \beta_i \}_{i=1}^{(k-1)/2}, \quad \{ \eta_j \}_{j=1}^{(k-1)/2}, \quad Y\text{ and } -1 = \sum_{i=1}^{(k-1)/2} \lambda^i + \lambda^{-i}.
\]

The \(Z(1/k)\)-submodule \(U\) of \(S\) generated by \(\{ \beta_i, \eta_j \}_{1 \leq i, j \leq (k-1)/2}\) is an ideal. If \(x \in S, \) denote by \(\bar{x}\) the image of \(x\) in the quotient \(S/2U.\) Let \(S_R = S \cap R\) and \(A = S_R/2U \cap R.\) As an abelian group \(A \simeq Z_4 \oplus (Z_2)^{\varphi(k)/2-1} - 1.\)

Now \(A\) is generated by \(\bar{1}\) and \(\{ \bar{\beta}_i \}_{i=1}^{(k-1)/2}.\) Since each \(\bar{\beta}_i\) has order two and \(\bar{\beta}_i \bar{\beta}_j = 0,\) it can be shown that any linear map \(\hat{\theta}: A \to Z_4\) such that \(\hat{\theta}(\bar{1}) = 1\) is a ring homomorphism. Hence there are \(2^{\varphi(k)/2-1}\) ring homomorphisms \(\hat{\theta}: A \to Z_4\) with \(\hat{\theta}(\bar{1}) = 1.\) Noting that \(\bar{Y}^2 = 1,\) one easily verifies that each such homomorphism admits two extensions \(\hat{\theta}: S/2U \to Z_4\) which send \(\bar{Y}\) to \(+1\) and \(-1.\) Thus there are \(2^{\varphi(k)/2}\) ring homomorphisms from \(S/2U\) to \(Z_4\) sending \(\bar{1}\) to \(\bar{1}\) and \(\bar{Y}\) to \(\pm 1.\)

It can be checked that for each \(j, c_j = \pm Y \mod U,\) so all of the above homomorphisms have \(\hat{\theta}(c_j) = \pm 1.\) For each \(\hat{\theta}\) define \(\theta\) to be the composition
This completes the proof of Proposition 3.

For certain special classes of actions there is a stronger relation than that given by Theorem 1. Specifically we have the following theorem.

Theorem 4. Suppose T is a smooth effective map of odd period k on M^{2n} such that there is only one type of irreducible representation about the fixed set. Then if T^* is the identity on $H^n(M; \mathbb{Q})$, $\text{sgn } M$ is congruent to $\text{sgn } F$ mod $2^{\varphi(k)}$.

Proof. Suppose that λ is the eigenvalue corresponding to the one type of irreducible representation. We may as well assume that $\lambda = \exp(2\pi i/k)$. Let $\psi_k(t) = t^m + a_{m-1}t^{m-1} + \cdots + a_0$ be the cyclotomic polynomial for λ, where $m = \varphi(k)$. Define

$$f_k(t) = (t - 1)^m \psi_k((t + 1)/(t - 1))$$

$$= (t + 1)^m + a_{m-1}(t + 1)^{m-1}(t - 1) + \cdots.$$

Note that $f_k(1) = 2^{\varphi(k)}$ and $f_k((\lambda + 1)/(\lambda - 1)) = 0$. Also $f_k(0) = \psi_k(-1) = \pm 1$ so that f_k is primitive. Together with the Gauss lemma this implies that the natural homomorphism

$$\mathbb{Z}[t]/\langle f_k(t) \rangle \rightarrow \mathbb{Q}[t]/\langle f_k(t) \rangle$$

is injective, so we can identify $\mathbb{Z}[t]/\langle f_k(t) \rangle$ with $\mathbb{Z}(x) \subseteq \mathbb{Q}(\lambda)$ where $x = (\lambda + 1)/(\lambda - 1)$. There is also a natural map $\mathbb{Z}[t]/\langle f_k(t) \rangle \rightarrow \mathbb{Z}/2^{\varphi(k)}\mathbb{Z}$ given by sending $g(t)$ to $g(1)$.

Let $\mathfrak{M}_*(\mathbb{Z}_k)$ denote the subgroup of $\mathfrak{M}_*(\mathbb{Z}_k)$ consisting of those actions with the prescribed representation type about the fixed set. Similarly let $\mathfrak{G}_*(\mathbb{Z}_k)$ be the subgroup of $\mathfrak{G}_*(\mathbb{Z}_k)$ consisting of those actions having this representation about the fixed set and further having T^* = identity on the middle dimensional rational cohomology.

On $\mathfrak{G}_*(\mathbb{Z}_k)$ we have that $\sigma(T, M) = \text{sgn } (M)$, and $\hat{\sigma}$ restricted to $\mathfrak{M}_*(\mathbb{Z}_k)$ takes values in $\mathbb{Z}(x)$ where $x = (\lambda + 1)/(\lambda - 1)$. Hence we have a commutative diagram

\[
\begin{array}{ccc}
\mathfrak{G}_*(\mathbb{Z}_k) & \xrightarrow{\text{sgn}} & \mathbb{Z} \\
\downarrow & & \downarrow \\
\mathfrak{M}_*(\mathbb{Z}_k) & \rightarrow & \mathbb{Z}(x)
\end{array}
\]

in which the composition across the bottom sends an item of fixed point data to the signature of the fixed set mod $2^{\varphi(k)}$. This may be checked on the conjugate Hopf bundle $\eta \rightarrow CP(l)$ by recalling [4] that the resulting value is

\[
\begin{align*}
\left(\frac{\lambda + 1}{\lambda - 1}\right)^{l+1} & = x^{l+1} & \text{when } l \text{ is even}, \\
1 - \left(\frac{\lambda + 1}{\lambda - 1}\right)^{l+1} & = 1 - x^{l+1} & \text{when } l \text{ is odd}.
\end{align*}
\]
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712