GROSS' ABSTRACT WIENER MEASURE
ON C[0, ∞)

H. C. FINLAYSON

Abstract. Classical Wiener measure on C[0, ∞) is obtained by the construction of Gross' abstract Wiener measure on a suitable Banach subspace of C[0, ∞).

In two other papers [2], [3] three classical Wiener measures were shown to be special cases of Gross' abstract measure. In each of those cases the space on which the measure was given was a Banach space with an obvious supremum norm. Since C[0, ∞) is not a Banach space with the supremum norm, the problem of constructing the classical measure on it by Gross' method needs a slight modification.

Let C' be the subspace of absolutely continuous functions on [0, ∞) with square integrable derivative. C' with the inner product

\[(x, y) = \int_0^\infty x'(t)y'(t)\,dt\]

is the Hilbert space to be used in the construction of abstract Wiener measure. It is easy to show for \(x \in C'\) that \(\|x\|\) exists, where

\[\|x\| = \sup_{t \in [0,\infty)} \sqrt{(2/\Pi)} \left| \int_0^t \left[x'(s)/\sqrt{(1 + s^2)} \right] ds \right|,\]

and is a norm on C'. Also, by use of the C. O. N. set of functions

\[\left\{ F_n(t) = \sqrt{(2/\Pi)} \int_0^t [1/\sqrt{(1 + s^2)}] h_n(2 \arctan s/\Pi) \, ds \right\}\]

where \(h_n(s)\) is the \(n\)th Haar function on [0, 1], [1, p. 16], it is easy to parallel the argument in [2] to show that \(\|\|\) is a measurable norm. The completion of C' in this norm is the subspace B of C[0, ∞) for which \(\int_0^\infty [1/\sqrt{(1 + s^2)}] dx(s)\) converges, and it is on B that the abstract measure is given.

Now from the law of the iterated logarithm in classical Wiener space [4] (which implies \(x(t) = O(\sqrt{t \ln t})\) a.e.), and from the definition of B above there follows that B has measure one in classical Wiener space. Finally, a consideration of linear functionals on B which are integrals of step functions shows that the abstract measure assigned to \(\{x \in B: x(t_i) \in [a_i, b_i]: i = 1, 2, \ldots, n\}\) is the same as the classical measure assigned to the same set. Thus

Received by the editors June 30, 1975.

the classical measure is obtained from the abstract measure by the enlargement of B to $C[0, \infty)$ and the assignment of measure zero to subsets of $C[0, \infty) \setminus B$.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MANITOBA, WINNIPEG, MANITOBA, CANADA