Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Brauer group of a real curve


Authors: F. R. Demeyer and M. A. Knus
Journal: Proc. Amer. Math. Soc. 57 (1976), 227-232
MSC: Primary 14G99; Secondary 14F05
DOI: https://doi.org/10.1090/S0002-9939-1976-0412193-7
MathSciNet review: 0412193
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Brauer group of a real algebraic affine curve is a finite group of exponent 2 whose rank is the number of connected real components (in the strong topology) of the curve.


References [Enhancements On Off] (What's this?)

  • [1] L. N. Childs, Mayer-Vietoris sequences and Brauer groups of nonnormal domains, Trans. Amer. Math. Soc. 196 (1974), 51-67. MR 0344240 (49:8979)
  • [2] F. R. DeMeyer, The Brauer group of a ring modulo an ideal, Rocky Mountain J. Math. 6 (1976), 191-198. MR 0399066 (53:2917)
  • [3] P. Donovan and M. Karoubi, Graded Brauer groups and $ K$-theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 5-25. MR 43 #8075. MR 0282363 (43:8075)
  • [4] W.-D. Geyer, Ein algebraischer Beweis des Satzes von Weichold über reelle algebraische Funktionenkörper, Algebraische Zahlentheorie, Bericht Tagung Math. Forschungsinst., Oberwolfach, 1964, Bibliographisches Institut Mannheim, 1967, pp. 83-98. MR 37 #5224. MR 0229650 (37:5224)
  • [5] A. Grothendieck, Le groupe de Brauer. I, II, III, Dix Exposés sur la Cohomologie des Schémas, Masson, Paris; North-Holland, Amsterdam, 1968. MR 39 #5586a, b, c.
  • [6] M. A. Knus and M. Ojanguren, A Mayer-Vietoris sequence for the Brauer group, J. Pure Appl. Algebra 5 (1974), 345-360. MR 0369339 (51:5572)
  • [7] S. Lichtenbaum, Duality theorems for curves over $ p$-adic fields, Invent. Math. 7 (1969), 120-136. MR 39 #4158. MR 0242831 (39:4158)
  • [8] Ju. I. Manin, Cubic forms: Algebra, geometry, arithmetic, ``Nauka", Moscow, 1972; English transl., North-Holland Math. Library, vol. 4, North-Holland, Amsterdam, 1973; American Elsevier, New York, 1974. MR 0360592 (50:13040)
  • [9] E. Witt, Zerlegung reeller algebraischer Funktionen in Quadrate, Schiefkörper über reellem Funktionenkörper, J. Reine Angew. Math. 171 (1934), 4-11.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14G99, 14F05

Retrieve articles in all journals with MSC: 14G99, 14F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0412193-7
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society