A NOTE ON IDENTIFICATIONS OF METRIC SPACES

FRANK SIWIEC

DEDICATED TO PROFESSOR JUN-ITI NAGATA

ABSTRACT. A space X is said to be oMK provided that X has a countable closed cover \mathcal{C} of metrizable subspaces such that if K is a compact subset of X, there is a $C \in \mathcal{C}$ for which $K \subseteq C$. A Hausdorff space is oMK and Fréchet if and only if it is representable as a closed image of a metric space obtained by identifying a discrete collection of closed sets with hemicompact boundaries to points.

A familiar example of a nonmetrizable space is R/N, that is, the space obtained by identifying the set of natural numbers \mathbb{N} in the set of real numbers \mathbb{R} to a point and giving the resulting set the quotient topology. In [5], the concept of a oMK space proved useful in characterizing certain countably infinite spaces. This note relates identification spaces such as R/N with the concept of a oMK space.

All spaces in this paper are understood to be Hausdorff topological spaces and all mappings are continuous onto functions. A space X is oMK provided that X has a countable closed cover \mathcal{C} of metrizable subspaces such that if K is a compact subset of X, there is a $C \in \mathcal{C}$ for which $K \subseteq C$. We may assume that \mathcal{C} consists of sets $C_1 \subseteq C_2 \subseteq \cdots$, and we will henceforth do so. A space X is Fréchet [2] provided that every accumulation point of a set A in X is the limit of some sequence in A. It is clear that oMK and Fréchet are each hereditary properties.

Theorem 1. If a space X is oMK and Fréchet, then it is an image of a metric space M under a closed mapping f, and there is a discrete collection \mathcal{F} of closed subsets of M such that $f(F)$ is a point for each $F \in \mathcal{F}$, $\text{Bdy} F$ is hemicompact for each $F \in \mathcal{F}$, and f is one-to-one upon restriction to $M - \bigcup \mathcal{F}$.

The proof follows from a number of propositions.

The concept of a oMK space arose in analogy to the concept of hemicompactness introduced by Arens [1]. A space X is hemicompact provided that there is a countable cover \mathcal{C} of compact subspaces such that if K is a compact subset of X, there is a $C \in \mathcal{C}$ for which $K \subseteq C$. A metrizable space is hemicompact if and only if it is separable and locally compact.

Proposition 2. (a) If a space X is oMK and Fréchet, then it is a closed image of a metric space having cardinality that of X.

Presented to the Society, November 7, 1975; received by the editors September 26, 1974 and, in revised form, May 18, 1975.

Key words and phrases. oMK space, closed image of a metric space.

© American Mathematical Society 1976
(b) A space X is hemicompact, Fréchet, and has every compact subspace metrizable if and only if it is a closed image of a locally compact separable metric space. (The metric space may be chosen to have cardinality that of X.)

Proof. We need only prove case (a), since case (b) is similar. (The “if” of case (b) is well known. In part, see [3].) Thus, assume that X is Fréchet and $X = \bigcup \{C_n \mid n \in N\}$ as given in the definition of σMK.

Let $C_0 = \emptyset$. Let $M_n = \text{cl}(C_n - C_{n-1})$ for each n. Let M be the discrete union of the M_n and let f be the natural mapping of M onto X. Clearly M is metrizable and f is continuous. We need to show that f is closed. Let x_0 be a point of X for which there is a sequence $\{x_i\}$ of distinct points of $X - \{x_0\}$ converging to x_0. It suffices to show that if points $p_i \in f^{-1}(x_i)$ are chosen for each i, then the sequence $\{p_i\}$ has a convergent subsequence in the space M. So, let $p_i \in f^{-1}(x_i)$ for each i.

We will need the fact that there exists an integer n_0 for which $\{x_0, x_1, x_2, \ldots\}$ is contained in $\bigcup \{M_n \mid n = 1, 2, \ldots, n_0\}$, and $x_i \notin M_n$ for $i \in N$ and $n > n_0$. Suppose not. Then there exists a subsequence $\{x_i\}$ of $\{x_j\}$ and a subsequence $\{n_j\}$ of N such that $x_{n_j} \in \text{cl}(C_{n_j+1} - C_{n_j})$ for each j, with $n_j \neq n_k$ for distinct j, k. Then for each j, there is a sequence $\{x_{n_j}^k \mid k \in N\}$ $\subset C_{n_j+1} - C_{n_j}$ such that $x_{n_j}^k \to x_{n_j}$. By the Fréchet assumption, since x_0 is an accumulation point of the set $\{x_{n_j}^k \mid k \in N\}$, there is a sequence $\{q_j\}$ contained in $\{x_{n_j}^k \mid k \in N\}$ such that $q_j \to x_0$ and $q_j \neq x_0$ for all j. Let F be the set $\{q_j \mid j \in N\}$. Then for each n, $F \cap C_n$ is finite and so closed. Since X is σMK and Fréchet, F must be closed. This is impossible, so our supposition is false.

By the fact that we have just shown, there is a subsequence $\{x_{i_j}\}$ and there is an integer $n_1 \leq n_0$ for which $\{x_0, x_{i_1}, x_{i_2}, \ldots\}$ is contained in M_{n_1}, and for each $n > n_1$, $x_{i_j} \in M_n$ for at most finitely many $j \in N$. Thus there is an $n_2 \leq n_1$ for which a subsequence of $\{p_1, p_2, \ldots\}$ is contained in M_{n_2}. This subsequence of $\{p_1, p_2, \ldots\}$ converges in M_{n_2}, and so also in M.

Lemma 3. Suppose $S = \{0, i, (i, j, k) \mid i, j, k \in N\}$ has a topology with the following properties. Each point (i, j, k) is itself an open set. Each set $S_i = \{i, (i, j, k) \mid j, k \in N\}$ is an open set and is homeomorphic to the “sequential fan” (that is, a set G is a neighborhood of i in S_i if $i \in G$, and for each j, $(i, j, k) \in G$ for all but finitely many k). The sequence i converges to 0. Then S cannot be both σMK and Fréchet.

Proof. Suppose on the contrary that S is Fréchet and $S = \bigcup \{C_i \mid i \in N\}$ as given by the definition of σMK. We may assume (without loss of generality) that $\{0, 1, 2, \ldots\} \subset C_1$. Notice that for each i, S_i is not contained in C_i, since S_i is not metrizable. In fact, for each i, $S_i - C_i$ must contain a sequence $S'_i = \{(i, j, k) \mid n \in N\}$ for some $j \in N$ and some subsequence $\{k_n\}$ of $\{k \mid k \in N\}$. Let $S' = \bigcup \{S'_i \mid i \in N\}$. Then 0 is an accumulation point of S'. Since S is assumed to be Fréchet, there is a sequence T in S' which converges to 0. But then, there is an integer i_0 for which $T \subset C_{i_0}$. Since $T \subset S'$ and T converges to 0, there is a point x_0 common to T and $\bigcup \{S'_i \mid i \geq i_0\}$. Let $i_1 \geq i_0$ be such that $x_0 \in T \cap S'_{i_1}$. Then $x_0 \in T \subset C_{i_0} \subset C_{i_1}$. Thus, $x_0 \in S'_{i_1} \subset C_{i_1}$. This is a contradiction.

Proposition 4. If a space X is σMK and Fréchet, and D is the set of those
points of X at which X is not first-countable, then no point of X is an accumulation point of D.

Proof. Otherwise, there exists a sequence $\{x_n\}$ of distinct points converging to a point $x_0 \in X$ such that each x_n (for $n = 1, 2, \ldots$) is a point of non-first-countability and $x_n \neq x_0$. There exists a sequence of disjoint open sets G_n such that $x_n \in G_n$ for $n = 1, 2, \ldots$. Since each G_n is Fréchet, but not countably bisequential at x_n (since a closed image of a metric space which is countably bisequential is metrizable), by [6], there exists a copy of the sequential fan in G_n "at $x_n"$. Let S_n denote this copy. Thus, for each $n = 1, 2, \ldots$, there is an S_n "at $x_n"," and these S_n are disjoint. Let $S = \bigcup \{S_n\}_{n=1,2,\ldots} \cup \{x_0\}$. By Lemma 3, S is either not σMK or not Fréchet. We have a contradiction.

Proposition 5. If a space $X = M/F$, where X is σMK, M is metrizable, and F is a closed subset of M, then Bdy F is hemicompact.

Proof. If Bdy F is empty, it is trivially hemicompact. If Bdy F is nonempty, $M/F = (M - \text{Int } F)/\text{Bdy } F$, so we may assume (without loss of generality) that the interior of F is empty. Let $X = \bigcup \{C_n\}_{n \in \mathbb{N}}$ as given by the definition of σMK. Let f be the natural mapping of M into X. Since there exists an $n \in \mathbb{N}$ for which the point $f(F) \in C_n$, we may assume that in fact, $f(F) \subseteq C_1$. Since C_n is metrizable, $f_n = f|f^{-1}(C_n)$ is a closed mapping of $f^{-1}(C_n)$ onto C_n with Bdy $f_n^{-1}(x)$ being compact for each point x of C_n ([4] or [7]). Let $K_n = \text{Bdy } f_n^{-1}(f(F))$ for each n, where the boundary is taken relative to $f^{-1}(C_n)$. Then each K_n is compact. Also, $F = \bigcup \{K_n\}_{n \in \mathbb{N}}$. Because, if $p \in F$, there is a sequence $\{p_n\}$ in $M - F$ which converges to p. But there is an integer n_0 for which $\{f(p), f(p_1), f(p_2), \ldots\} \subseteq C_{n_0}$. Thus, $p \in \text{cl } (f^{-1}(C_{n_0}) - F) \cap F = K_{n_0}$.

In order to show that $\{K_n\}_{n \in \mathbb{N}}$ is a sequence as in the definition of hemicompact, let K be a compact subset of F. Suppose that for all n, there is a point $x_n \in K - K_n \subseteq K - \text{cl } (f^{-1}(C_n) - F)$. Since K is sequentially compact, there is a point x in K which is the limit of some subsequence of $\{x_n\}$. For simplicity of notation, assume that the subsequence is $\{x_n\}$ itself. Let $\{G_n\}_{n \in \mathbb{N}}$ be an open base at x in M such that $G_n \supseteq G_{n+1}$ for each n. Since x_n is in (the boundary of) F, there exists a sequence $\{x^n_m\}_{m \in \mathbb{N}}$ in $G_n - F$ which converges to x_n. Let $L = \{x, x_n, x^n_m | m, n \in \mathbb{N}\}$. Then L is a compact subset of M. Since $f(L)$ is compact in X, there is an integer n_0 for which $f(L) \subseteq C_{n_0}$. Then the sequence $\{x^n_{n_0}\}_{m \in \mathbb{N}}$ is contained in $f^{-1}(C_{n_0}) - F$. This means that $x_{n_0} \in \text{cl } (f^{-1}(C_{n_0}) - F)$. We have a contradiction, and thereby we have shown that (the boundary of) F is hemicompact.

Proof of Theorem 1. Let X be σMK and Fréchet. By Proposition 2, X is a closed image of a metric space M' under a mapping h. Let D be the set of those points of X at which X is not first-countable. By Proposition 4, D is a discrete closed subspace of X, and ([4] or [7]) $X - D$ is metrizable. Let $M = h^{-1}(D) \cup (X - D)$, define $g: M' \to M$ by $g|h^{-1}(D) = \text{identity}$, $g|X - D = f|X - D$, define $h: M \to X$ by $f|h^{-1}(D) = h|h^{-1}(D)$, $f|(X - D) = \text{identity}$. Giving M the quotient topology as an image of M', g...
and \(f \) are closed continuous mappings and \(M \) is metrizable. Let \(\mathcal{F} = \{ f^{-1}(x) \mid x \in D \} \). Then \(\mathcal{F} \) is a discrete collection in \(M \) and by Proposition 5, each \(F \in \mathcal{F} \) has a hemicompact boundary. The proof is complete.

We now prove the converse of Theorem 1.

Theorem 6. If a space \(X \) is an image of a metric space \(M \) under a closed mapping \(f \), and there is a discrete collection \(\mathcal{F} \) of closed subsets of \(M \), such that \(f(F) \) is a point for each \(F \in \mathcal{F} \), \(\text{Bdy } F \) is hemicompact for each \(F \in \mathcal{F} \), and \(f \) is one-to-one upon restriction to \(M - \bigcup \mathcal{F} \), then \(X \) is \(oMK \) and Fréchet.

Proof. It is well known that a closed image of a metric space is Fréchet. We prove that \(X \) is \(oMK \) under the stated hypotheses. We may assume (without loss of generality) that \(\text{Int } F = \emptyset \) for each \(F \in \mathcal{F} \). Let each \(F = \bigcup \{ C_F^i \mid i \in N \} \) as given by the definition of hemicompact, and we may assume that each \(C_F^i \subset C_F^{i+1} \). Since \(\mathcal{F} \) is a discrete collection in \(M \), there exists a discrete collection \(\{ G_F^i \mid F \in \mathcal{F} \} \) of open sets such that \(F \subset G_F^i \) for every \(F \in \mathcal{F} \). Also, let \(G_F^n = G_F^i \cap S_{1/n}(F - C_F^i) \), where \(S_{1/n}(A) \) denotes the \(1/n \) open sphere around set \(A \). Let \(D_F^n = C_F^i - G_F^n \). Finally, let \(M'_n = M - \bigcup \{ G_F^i \mid F \in \mathcal{F} \} \). Then \(f(M'_n) \) is closed for each \(n \). Since \(f \) is a closed mapping and \(M'_n \) is a closed subset of \(M \), each \(f(M'_n) \) is a closed mapping. Also, \(f^{-1}(x) \) is compact for each point \(x \) of \(X \), since each \(D_F^n \) is compact. By [4] or [7], each \(M_n \) is then metrizable. It is clear that \(X = \bigcup \{ M_n \mid n \in N \} \).

Now let \(K \) be a compact subset of \(X \). And suppose that \(K \subset M_n \) for all \(n \). Then for each \(n \), there is a point \(x_n \in K - M_n \). But \(K \) is sequentially compact (being compact and Fréchet), and so there is a subsequence \(\{ x_{n_i} \} \) of distinct points, converging to a point \(x \) of \(K \), with \(x_{n_i} \neq x \) for all \(i \). Fix \(m \in N \). Since the sequence \(\{ x_{n_i} \} \) meets \(M_m \) in at most finitely many points, there exists an \(i_m \in N \) such that \(x_{n_i} \in f(\bigcup \{ C_F^i \mid F \in \mathcal{F} \}) \) for all \(i > i_m \). For each \(i > i_m \), let \(y_{n_i} \in f^{-1}(x_{n_i}) \cap \bigcup \{ C_F^i \mid F \in \mathcal{F} \} \). Since the set \(\{ y_{n_i} \mid i > i_m \} \) is not closed in \(M \), let \(y \) be an accumulation point of this set. So there exists a subsequence of \(\{ y_{n_i} \} \) which converges to \(y \). This means that \(f(y) = x \). Also, \(y \in \text{cl } \bigcup \{ G_F^i \mid F \in \mathcal{F} \} \subset \bigcup \{ G_{F_{i+1}}^i \mid F \in \mathcal{F} \} \) for all \(m \). We then have that \(y \in F_0 \) for some \(F_0 \in \mathcal{F} \). Since \(y \in G_{F_0}^0 \subset S_{1/m}(F_0 - C_{F_0}) \) for every \(m \), let \(p_{m} \) be a point of \(F_0 - C_{F_0} \) for which \(d(y, p_m) < 1/m \). Then \(p_m \to y \) in \(F_0 \). So there is an integer \(n_0 \) for which \(\{ y, p_1, p_2, \ldots \} \subset C_{F_0}^{n_0} \). Thus \(p_{n_0} \in C_{F_0}^{n_0} \). This is a contradiction.

Examples 7. To illustrate the results of this paper we consider two examples of countable regular Fréchet spaces. Let \(Q \) denote the usual space of rational numbers. Let \(Q' \) be \(Q^2 \) in the plane together with the entire \(x \)-axis of real numbers, with the usual topology from the plane. Let \(X_1 \) be the quotient space obtained by considering \(Q' \) and identifying the \(x \)-axis to a point. Let \(X_2 \) be the quotient space obtained by considering \(Q^2 \) and identifying the set \(Q \) in the \(x \)-axis to a point. Then \(X_1 \) and \(X_2 \) are the desired spaces. By Theorem 6, \(X_1 \) is \(oMK \). On the other hand, \(X_2 \) is not \(oMK \). To see this, suppose \(X_2 = \bigcup \{ C_n \mid n \in N \} \) as given by the definition of \(oMK \) and suppose that \(C_n \subset C_{n+1} \) for all \(n \). Since \(X_2 \) is not metrizable, for each \(n \) there exists a point \(x_n \in \left(\left([0, l/n]^2 \cap Q^2 \right) / Q \right) - C_n \). Then \(x_n \to (0, 0) \). So there exists an integer \(n_0 \) for which \(\{ x_n \mid n \in N \} \subset C_{n_0} \), contradiction.
REFERENCES

Department of Mathematics, John Jay College of the City University of New York, New York, New York 10019