Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on the metrization of $ \gamma $-spaces


Author: Harold W. Martin
Journal: Proc. Amer. Math. Soc. 57 (1976), 332-336
MSC: Primary 54E35
DOI: https://doi.org/10.1090/S0002-9939-1976-0413056-3
MathSciNet review: 0413056
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The class of quasi Nagata spaces, which strictly includes the class of wN-spaces, is defined. A closely related class of spaces, pseudo Nagata spaces, are also defined. It is shown that a Hausdorff $ \gamma $-space is metrizable if and only if it is either a quasi Nagata space or a pseudo Nagata space.


References [Enhancements On Off] (What's this?)

  • [1] A. V. Arhangel'skiĭ, Mappings and spaces, Uspehi Mat. Nauk 21 (1966), no. 4 (130), 133-184 = Russian Math. Surveys 21 (1966), no. 4, 115-162. MR 37 #3534. MR 0227950 (37:3534)
  • [2] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-125. MR 24 #A1707. MR 0131860 (24:A1707)
  • [3] P. Fletcher and W. F. Lindgren, Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974), 231-240. MR 49 #6173. MR 0341422 (49:6173)
  • [4] R. W. Heath, On open mappings and certain spaces satisfying the first countability axiom, Fund. Math. 57 (1965), 91-96. MR 131 #4006. MR 0179763 (31:4006)
  • [5] R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253-263. MR 45 #2657. MR 0293580 (45:2657)
  • [6] -, Some results in metrization theory, 1950-1972, Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973), Lecture Notes in Math., vol. 375, Springer-Verlag, Berlin, 1974, pp. 120-136. MR 50 #8459. MR 0355986 (50:8459)
  • [7] -, Metrizability of topological spaces (to appear).
  • [8] T. Hoshina, On the quotient $ s$-images of metric spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 10 (1970), 265-268. MR 43 # 1115. MR 0275358 (43:1115)
  • [9] D. J. Lutzer, Semimetrizable and stratifiable spaces, General Topology and Appl. 1 (1971), no. 1, 43-48. MR 45 #5952. MR 0296893 (45:5952)
  • [10] H. W. Martin, Metrization of symmetric spaces and regular maps, Proc. Amer. Math. Soc. 35 (1972), 269-274. MR 46 #2648. MR 0303511 (46:2648)
  • [11] -, Metrization and submetrization of topological spaces, Dissertation, University of Pittsburgh, 1973.
  • [12] -, Weak bases and metrization, Trans. Amer. Math. Soc. (to appear). MR 0423311 (54:11290)
  • [13] S. Nedev and M. M. Čoban, On the theory of 0-metrizable spaces. I, II, III, Vestnik Moskov. Univ. Ser. I Mat. Meh. 27 (1972), no. 1, 8-15; no. 2, 10-17; no. 3, 10-15. (Russian) MR 45 #4356; #4357; 46 #6312.
  • [14] R. R. Sabella, Convergence properties of neighboring sequences, Proc. Amer. Math. Soc. 38 (1973), 403-409. MR 47 #1036. MR 0312479 (47:1036)
  • [15] T. Shiraki, On some metrization theorems (to appear).
  • [16] F. Siwiec, Generalizations of the first axiom of countability, Rocky Mountain J. Math. 5 (1975), 1-60. MR 0358699 (50:11158)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54E35

Retrieve articles in all journals with MSC: 54E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0413056-3
Keywords: $ \gamma $-space, metrizable space, Nagata space, wN-space, quasi Nagata space, pseudo Nagata space
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society