Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fixed-point-free actions on a class of abelian groups


Author: P. M. Curran
Journal: Proc. Amer. Math. Soc. 57 (1976), 189-193
MSC: Primary 20J05
DOI: https://doi.org/10.1090/S0002-9939-1976-0414739-1
MathSciNet review: 0414739
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that all cohomology groups of a group $ G$ acting on an abelian group of a certain type vanish if the action of some subnormal abelian subgroup of $ G$ is fixed-point-free. This result is then applied to obtain results about group extensions and about the complete reducibility of linear groups.


References [Enhancements On Off] (What's this?)

  • [1] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N.J., 1956. MR 17, 1040. MR 0077480 (17:1040e)
  • [2] K. W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Math., vol. 143, Springer-Verlag, Berlin and New York, 1970. MR 43 #4923. MR 0279200 (43:4923)
  • [3] N. Jacobson, Lectures in abstract algebra. Vol. II: Linear algebra, Van Nostrand, Princeton, N.J., 1953. MR 14, 837. MR 0053905 (14:837e)
  • [4] S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965. MR 33 #5416. MR 0197234 (33:5416)
  • [5] D. G. Northcott, An introduction to homological algebra, Cambridge Univ. Press, New York, 1960. MR 22 #9523. MR 0118752 (22:9523)
  • [6] J.-P. Serre, Corps locaux, Publ. Inst. Math. Univ. Nancago, VIII, Actualités Sci. Indust., no. 1296, Hermann, Paris, 1962. MR 27 #133. MR 0150130 (27:133)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20J05

Retrieve articles in all journals with MSC: 20J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0414739-1
Keywords: Group cohomology, group extensions, linear groups, complete reducibility, fixed-point-free actions
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society