Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Fourier transforms of $ B$-splines and fundamental splines for cardinal Hermite interpolations


Author: S. L. Lee
Journal: Proc. Amer. Math. Soc. 57 (1976), 291-296
MSC: Primary 41A15; Secondary 42A68
MathSciNet review: 0420074
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using the exponential Hermite Euler splines we compute the Fourier transforms of the $ B$-splines and fundamental splines for Cardinal Hermite Interpolation, introduced by Schoenberg and Sharma and Lipow and Schoenberg respectively.


References [Enhancements On Off] (What's this?)

  • [1] Peter R. Lipow and I. J. Schoenberg, Cardinal interpolation and spline functions. III. Cardinal Hermite interpolation, Linear Algebra and Appl. 6 (1973), 273–304. MR 0477565 (57 #17084)
  • [2] S. L. Lee, 𝐵-splines for cardinal Hermite interpolation, Linear Algebra and Appl. 12 (1975), no. 3, 269–280. MR 0382916 (52 #3798)
  • [3] S. L. Lee, Exponential Hermite-Euler splines, J. Approximation Theory 18 (1976), no. 3, 205–212. MR 0435665 (55 #8623)
  • [4] S. L. Lee and A. Sharma, Cardinal lacunary interpolation by 𝑔-splines. I. The characteristic polynomials, J. Approximation Theory 16 (1976), no. 1, 85–96. MR 0415141 (54 #3232)
  • [5] M. J. Marsden, F. B. Richards, and S. D. Riemenschneider, Cardinal spline interpolation operators on 𝑙^{𝑝} data, Indiana Univ. Math. J. 24 (1974/75), 677–689. MR 0382925 (52 #3807)
  • [6] I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae, Quart. Appl. Math. 4 (1946), 45–99. MR 0015914 (7,487b)
  • [7] I. J. Schoenberg, Cardinal interpolation and spline functions, J. Approximation Theory 2 (1969), 167–206. MR 0257616 (41 #2266)
  • [8] I. J. Schoenberg, Cardinal interpolation and spline functions. II. Interpolation of data of power growth, J. Approximation Theory 6 (1972), 404–420. Collection of articles dedicated to J. L. Walsh on his 75th birthday, VIII. MR 0340899 (49 #5649)
  • [9] -, Cardinal interpolation and spline functions. IV. The exponential Euler splines, Proc. Oberwolfach Conf., 1971, ISNM 20(1972), 382-402.
  • [10] I. J. Schoenberg, Cardinal spline interpolation, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 12. MR 0420078 (54 #8095)
  • [11] I. J. Schoenberg and A. Sharma, Cardinal interpolation and spline functions. V. The 𝐵-splines for cardinal Hermite interpolation, Linear Algebra and Appl. 7 (1973), 1–42. MR 0477566 (57 #17085)
  • [12] F. Richards, The Lebesgue constants for cardinal spline interpolation, MRC Report #1364, University of Wisconsin, 1973.
  • [13] S. D. Silliman, The numerical evaluation by splines of the Fourier transform and the Laplace transform, MRC Report #1183, University of Wisconsin, 1972.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A15, 42A68

Retrieve articles in all journals with MSC: 41A15, 42A68


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1976-0420074-8
PII: S 0002-9939(1976)0420074-8
Keywords: Fourier transforms, spline functions, Cardinal Hermite Interpolation
Article copyright: © Copyright 1976 American Mathematical Society