GENERALIZED ANALYTIC INDEPENDENCE

JACOB BARSHAY

Abstract. If \(a \) is a proper ideal of a commutative ring with unity \(A \), a set of elements \(a_1, \ldots, a_n \in A \) is called \(a \)-independent if every form in \(A[X_1, \ldots, X_n] \) vanishing at \(a_1, \ldots, a_n \) has all its coefficients in \(a \). \(\text{sup} \ a \) is defined as the maximum number of \(a \)-independent elements in \(a \). It is shown that \(\text{grade} \ a \leq \text{sup} \ a \leq \text{height} \ a \). Examples are given to show that \(\text{sup} \ a \) need take neither of the limiting values and strong evidence is given for the conjecture that it can assume any intermediate value. Cohen-Macaulay rings are characterized by the equality of \(\text{sup} \) and \(\text{grade} \) for all ideals (or just all prime ideals). It is proven that equality of \(\text{sup} \) and \(\text{height} \) for all powers of prime ideals implies that the ring is \(S_1 \) (the Serre condition). Finally, independence is related to the structure of certain Rees algebras.

The notion of analytic independence relating sets of elements in a local ring to the maximal ideal of that ring can be delocalized. This generalization was made by Valla [4], [5] and leads to many interesting questions, several of which are considered here. Throughout this paper, "ring" will mean a commutative, Noetherian ring with unity.

Definition 1. If \(a_1, \ldots, a_n \) are elements of a ring \(A \) and \(a \) a proper ideal of \(A \), then we say that \(a_1, \ldots, a_n \) are \(a \)-independent if any form \(F(X_1, \ldots, X_n) \in A[X_1, \ldots, X_n] \) such that \(F(a_1, \ldots, a_n) = 0 \) must have all of its coefficients in \(a \).

Proposition 1. Let \(a \) be an ideal of \(A \), \(a_1, \ldots, a_n \) a set of \(a \)-independent elements. Then:

1. If \(n \geq 2 \), then \(a_1, \ldots, a_n \in a \).
2. If \(a \supseteq b \), then \(a_1, \ldots, a_n \) are \(b \)-independent.
3. If \(\{a_{i_1}, \ldots, a_{i_m}\} \subseteq \{a_1, \ldots, a_n\} \), then \(a_{i_1}, \ldots, a_{i_m} \) are \(a \)-independent.
4. If \(F(X_1, \ldots, X_n) \in A[X_1, \ldots, X_n] \) is a form of degree \(s \) such that \(F(a_1, \ldots, a_n) \in a(a_1, \ldots, a_n)^s \), then \(F(X_1, \ldots, X_n) \in aA[X_1, \ldots, X_n] \).

Due to (1), we will assume henceforth that sets of \(a \)-independent elements come from \(a \).

The notion of \(a \)-independence is related to the structure of the Rees algebra of the ideal generated by the set of elements. Recall that the Rees algebra of an ideal \(a \) in a ring \(A \) is \(\oplus_{r \geq 0} a^r \) where \(a^0 = A \). It is denoted by \(R(a) \). If \(a = (a_1, \ldots, a_n) \), then

Received by the editors May 2, 1975.

Key words and phrases. Analytic independence, grade, height, and \(\text{sup} \) of an ideal, Cohen-Macaulay ring, Rees algebra.

This work was supported by Grant No. 10164 of the C.U.N.Y. Faculty Research Award Program.

© American Mathematical Society 1976
Part (4) of the preceding proposition can be used to demonstrate the following result of Rees.

Proposition 2. Let A be a ring, $a = (a_1, \ldots, a_n)$ and $b \supseteq a$ ideals of A. Then a_1, \ldots, a_n are b-independent if and only if $R(a)/bR(a)$ is isomorphic to $(A/b)[X_1, \ldots, X_n]$.

Proof. Consider the exact sequence

$$0 \to Q_\infty(a_1, \ldots, a_n) \to A[X_1, \ldots, X_n] \xrightarrow{\psi} R(a) \to 0$$

where $Q_\infty(a_1, \ldots, a_n)$ is the homogeneous ideal generated by all forms which vanish at a_1, \ldots, a_n. Tensoring over A with A/b gives

$$Q_\infty(a_1, \ldots, a_n) \otimes_A A/b \to (A/b)[X_1, \ldots, X_n] \to R(a)/bR(a) \to 0.$$

But a_1, \ldots, a_n are b-independent if and only if

$$Q_\infty(a_1, \ldots, a_n) \subseteq bA[X_1, \ldots, X_n]$$

so the result follows.

Definition 2. Let A be a ring and a a proper ideal of A. Then $\text{sup } a = \sup \{ n | a \text{ contains } n \text{ a-independent elements} \}$.

In fact Valla has shown that $\text{sup } a$ is bounded above and below by the height of a ($\text{ht } a$) and the grade of a ($\text{gr } a$), respectively. Thus $\text{sup } a$ is just the maximum number of a-independent elements in a. For the sake of completeness, we include here a brief description of this work.

The fact that $\text{gr } a < \text{sup } a$ is an immediate consequence of

Proposition 3. Let A be a ring and a_1, \ldots, a_n an A-sequence. Then a_1, \ldots, a_n are (a_1, \ldots, a_n)-independent.

Proof. It is well known ([1] or [3]) that for ideals generated by A-sequences, the symmetric algebra and the Rees algebra are isomorphic. In particular, $Q_\infty(a_1, \ldots, a_n)$ is generated by 1-forms $\sum_{i=1}^n b_i X_i$ such that $\sum_{i=1}^n b_i a_i = 0$. But a_1, \ldots, a_n being an A-sequence implies that $H_i(K(a_1, \ldots, a_n; A)) = 0$ where $K(a_1, \ldots, a_n; A)$ denotes the Koszul complex. Thus every $b_i \in (a_1, \ldots, a_n)$, i.e., $Q_\infty(a_1, \ldots, a_n) \subseteq (a_1, \ldots, a_n)A[X_1, \ldots, X_n]$.

If p_1, \ldots, p_t are the minimal primes of an ideal a of A, then $\text{sup } a \leq \text{sup } p_i$ for $i = 1, \ldots, t$ by (2) of Proposition 1. Since $\text{ht } a = \min_{i=1, \ldots, t} \{ \text{ht } p_i \}$, to show that $\text{sup } a \leq \text{ht } a$, it suffices to verify the inequality for prime ideals. For A an integral domain, this result is due originally to Boger [2].

Proposition 4. Let p be a prime ideal in an integral domain A. Then $\text{sup } p \leq \text{ht } p$.

Proof. Let $\text{sup } p = n$, $a_1, \ldots, a_n \in p$ a set of p-independent elements, $a = (a_1, \ldots, a_n)$. By Proposition 2,

$$R(a)/pR(a) \approx (A/p)[X_1, \ldots, X_n]$$

so $pR(a)$ is a prime ideal of $R(a)$ and $\text{ht } (pR(a)) \geq 1$ since $pR(a) \neq 0$.
Furthermore \(p \subseteq pR(a) \subseteq pA[t] \) and \(pA[t] \cap A = p \) implies that \(pR(a) \cap A = p \). Denote by \(K \) the quotient field of \(A \) and by \(k \) the quotient field of \(A/p \). Applying Proposition 2, p. 326 of [6] gives

\[
ht (pR(a)) + tdkK(t) < ht p + tdkK(t)
\]

from which \(ht p \geq n \).

Proposition 5. Let \(p \) be a prime ideal of a ring \(A \). Denote by \(A_{\text{red}} \) the reduction of \(A \), i.e., \(A/\sqrt{0} \) and by \(p_{\text{red}} \) the image of \(p \) in \(A_{\text{red}} \). Then

1. \(\text{sup} \ p = \text{sup} (pA_p) \),
2. \(\text{sup} \ p = \text{sup} p_{\text{red}} \).

Proof. (1) Observe that \(R(a) \otimes_A A_p \cong R_{A_p}(a A_p) \). Thus localizing the exact sequence

\[
0 \to I \to (A/p)[X_1, \ldots, X_n] \to R(a)/pR(a) \to 0
\]
gives the exact sequence

\[
0 \to I_p \to (A/p)[X_1, \ldots, X_n] \to R(a A_p)/pR(a A_p) \to 0.
\]

If \(\text{sup} \ p = n, a_1, \ldots, a_n \) a set of \(p \)-independent elements, \(a = (a_1, \ldots, a_n) \), then \(I = 0 \). Thus \(I_p = 0 \) which gives \(a_1, \ldots, a_n \) also \(pA_p \)-independent. Conversely, if \(\text{sup} \ p = n \), it is clear that a set of \(pA_p \)-independent elements \(a_1, \ldots, a_n \) can be chosen in \(p \). Then \(I_p = 0 \) which gives \(I = 0 \). Thus \(a_1, \ldots, a_n \) are \(p \)-independent.

(2) Denote by \(\bar{c} \) the image in \(A_{\text{red}} \) of \(c \in A \) and by \(\bar{F}(X_1, \ldots, X_n) \) the image in \(A_{\text{red}}[X_1, \ldots, X_n] \) of \(F(X_1, \ldots, X_n) \in A[X_1, \ldots, X_n] \). If \(a_1, \ldots, a_n \) are \(p \)-independent elements and \(\bar{F}(\bar{a}_1, \ldots, \bar{a}_n) = 0 \), then \(F(a_1, \ldots, a_n) \) is nilpotent. Thus \(\bar{F}(X_1, \ldots, X_n) \in pA[X_1, \ldots, X_n] \) for some \(s \geq 1 \) which gives

\[
F(X_1, \ldots, X_n) \in pA[X_1, \ldots, X_n]
\]

and

\[
\bar{F}(X_1, \ldots, X_n) \in p_{\text{red}} A_{\text{red}}[X_1, \ldots, X_n].
\]

Thus \(\bar{a}_1, \ldots, \bar{a}_n \) are \(p_{\text{red}} \)-independent. Conversely, if \(a_1, \ldots, a_n \in p \) represent a set of \(p_{\text{red}} \)-independent elements \(\bar{a}_1, \ldots, \bar{a}_n \) and \(F(a_1, \ldots, a_n) = 0 \), then \(\bar{F}(\bar{a}_1, \ldots, \bar{a}_n) = 0 \). Thus \(\bar{F}(X_1, \ldots, X_n) \in p_{\text{red}} A_{\text{red}}[X_1, \ldots, X_n] \) and \(F(X_1, \ldots, X_n) \) has its coefficients in \(p + \sqrt{0} = p \).

Since the equalities of Proposition 5 hold with sup replaced by ht, it suffices to consider the case of the maximal ideal in a reduced local ring.

Proposition 6. Let \(A \) be a reduced local ring with maximal ideal \(m \). Then \(\text{sup} \ m \leq \text{ht} m \).

Proof. Let \(p_1, \ldots, p_k \) be the minimal primes of \(A \) and consider the canonical map \(A \to \oplus_{i=1}^k A/p_i \) which is injective since \(A \) is reduced.

By Proposition 4, \(\text{sup} \ m/p_i \leq \text{ht} m/p_i \leq \text{ht} m \) for each \(i = 1, \ldots, k \). Set \(\text{ht} m = n \) and let \(a_1, \ldots, a_{n+1} \in m \). For each \(i = 1, \ldots, k \), there exists a form \(F_i(X_1, \ldots, X_{n+1}) \in A[X_1, \ldots, X_{n+1}] \) of degree \(s_i \) such that

1. \(F_i(a_1, \ldots, a_{n+1}) \in p_i \).
(ii) \(F_i(X_1, \ldots, X_{n+1}) \notin mA[X_1, \ldots, X_{n+1}] \).

Setting \(F(X_1, \ldots, X_{n+1}) = \prod_{i=1}^{k} F_i(X_1, \ldots, X_{n+1}) \), we have

(iii) \(F(a_1, \ldots, a_{n+1}) \subseteq \cap_{i=1}^{k} p_i = (0) \),

(iv) \(F(X_1, \ldots, X_{n+1}) \notin mA[X_1, \ldots, X_{n+1}] \).

Thus no set of \((n + 1)\)-elements is \(m\)-independent.

Thus it is established that \(\text{gra} \leq \sup a \leq \text{ht} a \). For prime ideals, using (1) of Proposition 5 and the fact that a system of parameters in a local ring is analytically independent, one knows that \(\sup p = \text{ht} p \), a fact which can be extended to radical ideals. It was first thought that perhaps \(\sup \) always took one of the limiting values. The following examples show this to be false.

Example. Let \(A = k[x, y, z]/(x^2, xy^2, XYZ) = k[x, y, z] \), \(m = (x, y, z) \), \(a = m^2 = (xy, xz, y^2, yz, z^2) \), and \(b = (xy, xz, y^2, yz, yz) \). Then \(\text{ht} a = \text{ht} m = 2 \) and \(\text{gra} = 0 \) since \(0 \neq xy \in (0 : a) \). Now \(z^2 \) is an \(a \)-independent element. For \(c(z^2)^n = 0 \) implies that \(c \in (xy) \subseteq a \). So \(\sup a > 1 \). On the other hand, suppose \(u, v \in a \) are \(a \)-independent. Since \(x^2 = 0 \), no elements of \(b \) are \(a \)-independent. Thus we can write \(u = f(z)z^p + u', v = g(z)z^q + v' \) where \(u', v' \in b, p, q \geq 2 \), and \(f(0) \neq 0, g(0) \neq 0 \). Assume with no loss of generality that \(p \geq q \). Then \(xg(z)T_1 - xz^{p-q}f(z)T_2 \) is a form which vanishes at \(u, v \). However \(xg(z) = xg(0) = x \neq 0 \) (mod \(a) \). Thus \(u, v \) are not \(a \)-independent and \(\sup a = 1 \).

It is reasonable now to conjecture that \(\sup \) can take any value between grade and height. The following easy result is useful in constructing sets of independent elements.

Proposition 7. Let \(a, b \) be ideals of a ring \(A, a_1, \ldots, a_n \in a, \varphi: A \rightarrow A/b \).

If \(\varphi(a_1), \ldots, \varphi(a_n) \) are \(\varphi(a) \)-independent, then \(a_1, \ldots, a_n \) are \((a + b)\)-independent.

Example. Let

\[
A = k[x_0, \ldots, x_n]/(x_0^2, x_0x_1^2, \ldots, x_0x_1 \cdots x_{n-2}x_{n-1}, x_0x_1 \cdots x_n)
\]

\[
m = (x_0, \ldots, x_n).
\]

Clearly \(\text{ht} m = n \) and \(\text{gr} m = 0 \) since \(0 \neq x_0x_1 \cdots x_{n-1} \in (0 : m) \). Thus \(\text{ht} m^k = n, \text{gr} m^k = 0 \) for \(k = 1, \ldots, n + 1 \). The claim is that \(\sup m^k \geq n + 1 - k \) for \(k = 1, \ldots, n + 1 \) with equality holding when \(k = 1, n, \text{ or } n + 1 \).

To verify the inequality, let \(b \) be the principal ideal generated by \(x_0x_1 \cdots x_{k-1} \) and

\[
\varphi: A \rightarrow A/b \approx k[x_0, \ldots, x_n]/(x_0^2, x_0x_1^2, \ldots, x_0x_1 \cdots x_{k-3}x_{k-2}, x_0x_1 \cdots x_{k-1}).
\]

Thus \(\varphi(x_k^2), \ldots, \varphi(x_{k-1}^2) \) form an \((A/b)\)-sequence and so are \((\varphi(x_k^2), \ldots, \varphi(x_{k-1}^2)) \)-independent by Proposition 3. Hence \(x_k^2, \ldots, x_{k-1}^2 \) are \((x_k, \ldots, x_{k-1})\)-independent where \((x_k, \ldots, x_{k-1}) \subseteq m^k \).

If \(k = 1 \), then \(\sup m = \text{ht} m = n \). If \(k = n + 1 \) then \(x_nx_1 \cdots x_{n-1} \in (0 : m) \) \subseteq (0 : m^{n+1}) \) but \(x_0x_1 \cdots x_{n-1} \notin m^{n+1} \) so \(\sup m^{n+1} = 0 \). If \(k = n \), a modifi-
cation of the previous example gives sup \(m^n = 1 \).

Whether the sequence of ideals in the above example can serve to confirm the conjecture on the intermediate values of sup is unclear. In general, the problem of imposing upper bounds on sup \(a \) (better then \(hta \)) requires the construction of forms vanishing on arbitrary sets of elements of \(a \). The usual constructions, for example, using determinants, tend to fail in this situation because the coefficients end up in \(a \).

The fact that \(sup p = htp \) for prime ideals \(p \) leads immediately to

PROPOSITION 8. Let \(A \) be a ring. The following conditions are equivalent:

1. \(sup a = gra \) for all ideals \(a \) of \(A \);
2. \(sup p^n = grp^n \) for all prime ideals \(p \) of \(A \), all \(n \geq 1 \);
3. \(sup p = grp \) for all prime ideals \(p \) of \(A \);
4. \(A \) is Cohen-Macaulay.

If \((1') \) is the condition \(sup a = hta \) for all ideals \(a \) of \(A \) and \((2') \) is the condition \(sup p^n = htp^n \) for all prime ideals \(p \) and all \(n \geq 1 \), some natural next questions are to characterize those rings satisfying \((1') \) or \((2') \). It should be noted that \((2') \) implies \(sup q = htp \) for all primary ideals. For the equality of \((1') \) Proposition 5 is valid for \(p \)-primary ideals. Thus one can reduce to the case of a local ring and an \(m \)-primary ideal. In that case, \(m^t \subseteq q \subseteq m \) for some \(t \geq 1 \). Thus \(htpq = htm^t = sup m^t \leq sup q \).

DEFINITION 3. A ring \(A \) is said to be \(S_n \) \((n = 0, 1, 2, \ldots) \) if depth\(A_p \geq \min\{n, \dim A_p\} \) for all \(p \in \text{Spec } A \).

Here depth\(A_p = grp A_p \). In other words, \(A_p \) is Cohen-Macaulay when \(htp \leq n \) and \(grp \geq n \) when \(htp > n \). Clearly \(A \) is \(S_1 \) if and only if every height 1 prime contains a regular element, or, if and only if the zero ideal of \(A \) is unmixed.

PROPOSITION 9. If \(A \) is a ring in which \(sup p^n = htp^n \) for all prime ideals \(p \) and all \(n \geq 1 \), then \(A \) is \(S_1 \).

PROOF. Suppose that \(p \) is an embedded prime of \((0) \). Then \(htp \geq 1 \) and \(p = (0:x) \) for some \(x \), where \(x \notin \bigcap_{n \geq 1} p^n \). Choosing \(n \) such that \(x \in p^{n-1}, x \notin p^n \), we get \(x \in (0:p) \subseteq (0:p^n) \). Thus \(sup p^n = 0 \) whereas \(htp^n \geq 1 \), which is a contradiction.

REFERENCES

5. ————, *Su certi isomorfismi di algebre e l'indipendenze rispetto ad un ideale*, Matematiche (Catania) 26 (1971), 35-45 (1972). MR 47 #4991.