Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The exponential spectrum in Banach algebras

Author: Robin Harte
Journal: Proc. Amer. Math. Soc. 58 (1976), 114-118
MSC: Primary 46H05; Secondary 47H10
MathSciNet review: 0407603
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The exponential spectrum of a Banach algebra element is introduced, and used to obtain a spectral permanence result for quotient algebras.

References [Enhancements On Off] (What's this?)

  • [1] S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970/71), 529-544. MR 43 #5344. MR 0279623 (43:5344)
  • [2] R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972. MR 50 #14335. MR 0361893 (50:14335)
  • [3] B. Gramsch and D. C. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17-32. MR 45 #936. MR 0291846 (45:936)
  • [4] M. R. F. Smyth and T. T. West, The spectral radius formula in quotient algebras, Math. Z. 145 (1975), 157-161. MR 0385568 (52:6429)
  • [5] J. L. Taylor, Banach algebras and topology, Algebras in Analysis, Academic Press, New York, 1975. MR 0417789 (54:5837)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46H05, 47H10

Retrieve articles in all journals with MSC: 46H05, 47H10

Additional Information

Keywords: Generalized exponentials in a Banach algebra, boundary of the spectrum, connected hull of a compact set
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society