Invariance theory of Hermitian manifolds

Author:
Harold Donnelly

Journal:
Proc. Amer. Math. Soc. **58** (1976), 229-233

MSC:
Primary 53C55; Secondary 58G99

DOI:
https://doi.org/10.1090/S0002-9939-1976-0407782-X

MathSciNet review:
0407782

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the invariants of a Hermitian manifold are generated by contractions in the components of the curvature and torsion tensors of the canonical Hermitian connection.

**[1]**M. Atiyah, R. Bott and V. K. Patodi,*On the heat equation and index theorem*, Invent. Math.**19**(1973), 279-330. MR**0650828 (58:31287)****[2]**H. Donnelly,*Minakshisundaram's coefficients on Kaehler manifolds*, Proc. Sympos. Pure Math., vol. 27, part 2, Amer. Math. Soc., Providence, R.I., 1975, pp. 195-203. MR**0380903 (52:1800)****[3]**-,*A spectral condition determining the Kaehler property*, Proc. Amer. Math. Soc.**47**(1975), 187-194. MR**0355914 (50:8388)****[4]**P. Gilkey,*Spectral geometry and the Kaehler condition for complex manifolds*, Invent. Math.**26**(1974), 231-258. MR**0346849 (49:11571)****[5]**P. Gilkey and J. Sacks,*Spectral geometry and manifolds of constant holomorphic sectional curvature*, Proc. Sympos. Pure Math., vol. 27, part 2, Amer. Math. Soc., Providence, R.I., 1975, pp. 281-285. MR**0380902 (52:1799)****[6]**V. K. Patodi,*An analytic proof of the Riemann-Roch-Hirzebruch theorem for Kaehler manifolds*, J. Differential Geometry**5**(1971), 251-283. MR**44**#7502. MR**0290318 (44:7502)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
53C55,
58G99

Retrieve articles in all journals with MSC: 53C55, 58G99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0407782-X

Article copyright:
© Copyright 1976
American Mathematical Society