Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the product and composition of universal mappings of manifolds into cubes


Author: W. Holsztyński
Journal: Proc. Amer. Math. Soc. 58 (1976), 311-314
MSC: Primary 55C20; Secondary 57A15
DOI: https://doi.org/10.1090/S0002-9939-1976-0407832-0
MathSciNet review: 0407832
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A map $ f:X \to Y$ is said to be universal iff for every $ g:X \to Y$ there exists $ x \in X$ such that $ f(x) = g(x)$.

Let $ {M_t},t \in T$, and $ {M^n}$ be orientable compact manifolds (in general with boundary). Let $ \dim {M^n} = n$ and let $ {Q_t}$, be a cube with $ \dim {Q_t} = \dim {M_t}$. Let $ {f_t}:{M_t} \to {Q_t},{f_0}:{M^n} \to {I^n}$ and $ {f_k}:{I^n} \to {I^n}$ be universal mappings for $ t \in T$ and $ k = 1,2, \ldots $ Then

(1.8) Theorem. The product map $ \prod\nolimits_{t \in T} {{f_t}:{M_t} \to \prod\nolimits_{t \in T} {{Q_t}} } $ is universal.

(2.1) Theorem. The composition $ {f_s} \circ {f_{s - 1}} \circ \cdots \circ {f_1}:{M^n} \to {I^n}$ is a universal map for $ s = 1,2, \ldots $

(2.2) Theorem. The limit $ X$ inverse sequence

$\displaystyle {I^n}\xleftarrow{{{f_1}}}{I^n}\xleftarrow{{{f_2}}}{I^n}\xleftarrow{{{f_3}}} \cdots $

is an $ n$-dimensional space with the fixed point property.

Some ``counterexamples'' are furnished. Also the following variant of Proposition (1.5) from [3] is given:

Theorem A (Proposition (1.5) of [3]). Let $ X$ be a compact space of (covering) dimension $ \leq n$. Then $ f:X \to {I^n}$ is a universal mapping iff the element $ {f^\ast }({e^n})$ of the $ n$th Čech cohomology group $ {H^n}(X,{f^{ - 1}}({S^{n - 1}});{\mathbf{Z}})$ is different from 0 for a generator $ {e^n}$ of $ {H^n}({I^n},{S^{n - 1}};{\mathbf{Z}})$ where $ ({S^{n - 1}} = \partial {I^n})$.


References [Enhancements On Off] (What's this?)

  • [1] W. Holsztyński, Universal mappings and fixed theorems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 433-438. MR 36 #4545. MR 0221493 (36:4545)
  • [2] -, Universality of mappings onto the products of snake-like spaces. Relation with dimension, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 161-167. MR 37 #5857. MR 0230294 (37:5857)
  • [3] -, Universality of the product mappings onto products of $ {I^n}$ and snake-like spaces, Fund. Math. 64 (1969), 147-155. MR 39 #6249. MR 0244936 (39:6249)
  • [4] -, On the composition and products of universal mappings, Fund. Math. 64 (1969), 181-188. MR 39 #4812. MR 0243491 (39:4812)
  • [5] -, A characterization for the dimension of an inverse limit of compacta, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 47 (1967), 264-265 (1970). MR 42 #2443. MR 0267541 (42:2443)
  • [6] -, Universal mappings and a relation to the stable cohomotopy groups, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 75-79. MR 42 #5234. MR 0270345 (42:5234)
  • [7] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 # 1007. MR 0210112 (35:1007)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55C20, 57A15

Retrieve articles in all journals with MSC: 55C20, 57A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0407832-0
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society