Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The dimension of inverse limits


Author: M. G. Charalambous
Journal: Proc. Amer. Math. Soc. 58 (1976), 289-295
MSC: Primary 54F45; Secondary 54E15
DOI: https://doi.org/10.1090/S0002-9939-1976-0410696-2
MathSciNet review: 0410696
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A result is obtained concerning the dimension of inverse limits of uniform spaces from which several propositions follow that improve earlier results by various authors.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Elements of mathematics. General topology. Part 1, Hermann, Paris; Addison-Wesley, Reading, Mass., 1966. MR 34 # 5044a. MR 0205210 (34:5044a)
  • [2] M. G. Charalambous, A new covering dimension function for uniform spaces, J. London Math. Soc. 11 (1975), 137-143. MR 0375258 (51:11454)
  • [3] -, Uniformity-dependent dimension functions (to appear).
  • [4] H. Cook and B. Fitzpatrick, Jr., Inverse limits of perfectly normal spaces, Proc. Amer. Math. Soc. 19 (1968), 189-192. MR 36 #3306. MR 0220240 (36:3306)
  • [5] R. Engelking, On functions defined on Cartesian products, Fund. Math. 59 (1966), 221-231. MR 34 #3546. MR 0203697 (34:3546)
  • [6] W. Hurewicz and H. Wallman, Dimension theory, Princeton Math. Ser., vol. 4, Princeton Univ. Press, Princeton, N.J., 1941. MR 3, 312. MR 0006493 (3:312b)
  • [7] J. R. Isbell, Uniform spaces, Math. Surveys, no. 12, Amer. Math. Soc., Providence, R.I., 1964. MR 30 #561. MR 0170323 (30:561)
  • [8] V. L. Kljušin, Perfect mappings of paracompact spaces, Dokl. Akad. Nauk SSSR 159 (1964), 734-737 = Soviet Math. Dokl. 5 (1964), 1583-1586. MR 30 #3447. MR 0173234 (30:3447)
  • [9] S. Mardešić, On covering dimension and inverse limits of compact spaces, Illinois J. Math. 4 (1960), 278-291. MR 22 #7101. MR 0116306 (22:7101)
  • [10] E. A. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375-376. MR 27 #2956. MR 0152985 (27:2956)
  • [11] K. Morita, On the dimension of the product of Tychonoff spaces, General Topology and Appl. 3 (1973), 123-133. MR 47 #9574. MR 0321041 (47:9574)
  • [12] K. Nagami, Dimension theory, Pure and Appl. Math., vol. 37, Academic Press, New York and London, 1970. MR 42 #6799. MR 0271918 (42:6799)
  • [13] -, Countable paracompactness of inverse limits and products, Fund. Math. 73 (1971/72), no. 3, 261-270. MR 46 #844. MR 0301688 (46:844)
  • [14] P. Nyikos, Prabir Roy's space $ \Delta $ is not $ N$-compact, General Topology and Appl. 3 (1973), 197-210. MR 48 #3007. MR 0324657 (48:3007)
  • [15] B. Pasynkov, $ \omega $-mappings and inverse spectra, Dokl. Akad. Nauk SSSR 150 (1963), 488-491 = Soviet Math. Dokl. 4 (1963), 706-709. MR 27 #2955. MR 0152984 (27:2955)
  • [16] Ju. M. Smirnov, On the dimension of increments of bicompact extensions of proximity spaces and topological spaces. II, Mat. Sb. 71 (113) (1966), 454-482; English transl., Amer. Math. Soc. Transl. (2) 84 (1969), 219-251. MR 35 #4887. MR 0214035 (35:4887)
  • [17] A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977-982. MR 10, 204. MR 0026802 (10:204c)
  • [18] J. Terasawa, On the zero-dimensionality of some non-normal product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 11 (1972), 167-174. MR 46 #9948. MR 0310850 (46:9948)
  • [19] N. Noble and Milton Ulmer, Factoring functions on Cartesian products, Trans. Amer. Math. Soc. 163 (1972), 329-339. MR 44 #5917. MR 0288721 (44:5917)
  • [20] Z. Frolík, A note on metric-fine spaces, Proc. Amer. Math. Soc. 46 (1974), 111-119. MR 0358704 (50:11163)
  • [21] A. W. Hager, Some nearly fine uniform spaces, Proc. London Math. Soc. (3) 28 (1974), 517-546. MR 0397670 (53:1528)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F45, 54E15

Retrieve articles in all journals with MSC: 54F45, 54E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0410696-2
Keywords: Cozero sets, $ \mathcal{U}$-open sets, dim, $ \mathcal{U}$-dim, inverse limits of spaces, normal, perfectly normal, separable, Lindelöf, pseudocompact, countably compact, strongly paracompact spaces
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society