On relatively free subsets of Lie groups
Author:
Bernard R. Gelbaum
Journal:
Proc. Amer. Math. Soc. 58 (1976), 301-305
MSC:
Primary 22E15
DOI:
https://doi.org/10.1090/S0002-9939-1976-0412343-2
MathSciNet review:
0412343
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In an arbitrary neighborhood of the identity
of a connected Lie group there is a subset
of cardinality
and relatively free , i.e., the only nontrivial equations
, satisfied by substitution for distinct symbols among the
distinct elements of
are equations that are identities throughout
.
- [1] J. E. Coury, On the measure of zeros of coordinate functions, Proc. Amer. Math. Soc. 25 (1970), 16-20. MR 41 #395. MR 0255735 (41:395)
- [2] B. R. Gelbaum, Free topological groups, Proc. Amer. Math. Soc. 12 (1961), 737-743. MR 25 #4025. MR 0140607 (25:4025)
- [3] J. de Groot and T. Dekker, Free subgroups of the orthogonal group, Compositio Math. 12 (1954), 134-136. MR 16, 672. MR 0067120 (16:672e)
- [4] R. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N.J., 1965. MR 31 #4927. MR 0180696 (31:4927)
- [5] F. Hausdorff, Grundzüge der Mengenlehre, Veit, Leipzig, 1914; photographic reproduction, Chelsea, New York, 1949. MR 11, 88. MR 0031025 (11:88d)
- [6] R. M. Robinson, On the decomposition of spheres, Fund. Math. 34 (1947), 246-260. MR 10, 106. MR 0026093 (10:106a)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E15
Retrieve articles in all journals with MSC: 22E15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1976-0412343-2
Keywords:
Free topological groups,
Lie groups and (relatively) free subsets thereof
Article copyright:
© Copyright 1976
American Mathematical Society