SINGULAR PERTURBATIONS AND THE TRANSITION FROM THIN PLATE TO MEMBRANE

ZEEV SCHUSS

Abstract. The equation

\[\frac{Eh^2}{12(1 - \sigma^2)} \Delta^2 w - \sum_{i,j=1}^{2} \frac{\partial}{\partial x_i} \left(\sigma_{ij} \frac{\partial w}{\partial x_j} \right) = f \]

describing the normal displacement \(w \) of a thin elastic plate of thickness \(h \) under uniform tension in equilibrium is considered. It is shown that if the displacement and its normal derivative on the edge of the plate are bounded uniformly with respect to \(h \) then the solution \(u \) of the membrane equation

\[- \sum_{i,j=1}^{2} \frac{\partial}{\partial x_i} \left(\sigma_{ij} \frac{\partial u}{\partial x_j} \right) = f \]

with the same boundary values as \(w \) approximates the displacement throughout the plate in the \(L^2 \) sense. Herein, the rate

\[\int_{\Omega} \left| w(x) - u(x) \right|^2 dx \leq C h^2 \int_{\Omega} \left| f(x) \right|^2 dx \]

is given, where \(C \) is a constant independent of \(h \) and \(f \), and \(\Omega \) in the face of the plate. This extends the results of A. Friedman [6] and F. John [10] up to the boundary and improves the rate of convergence in (*) given by J. L. Lions [12] and W. M. Greenlee [7] from \(h \) to \(h^2 \).

The equation describing the normal displacement \(w(x_1, x_2) \) of a thin elastic plate of thickness \(h \) in equilibrium is [11]

\[\frac{Eh^2}{12(1 - \sigma^2)} \Delta^2 w - \sum_{i,j=1}^{2} \frac{\partial}{\partial x_i} \left(\sigma_{ij} \frac{\partial w}{\partial x_j} \right) = f. \]

Here as usual, \(E \) denotes Young's modulus, \(\sigma \) Poisson's ratio, \(\sigma_{ij} \) are the components of the stress in the plate and \(f \) is the external force per unit area. Since the effect of the forces or constraints acting on the edge of the plate can be achieved by replacing \(w \) by \(w - \Phi \) we may assume that the plate does not undergo any deformation at the edge; thus the displacement is caused solely by forces acting on the faces of the plate. The corresponding displacement of a membrane is governed by the second order equation [11]

\[- \sum_{i,j=1}^{2} \frac{\partial}{\partial x_i} \left(\sigma_{ij} \frac{\partial u}{\partial x_j} \right) = f. \]

As mentioned in [10], replacing (I) by (II) can in general only be justified

Received by the editors December 3, 1974.

Key words and phrases. Singular perturbations, higher order elliptic boundary value problems, thin plates and membranes.

© American Mathematical Society 1976
when the plate is under tension, i.e. when the σ_{ij} form the coefficients of a positive definite quadratic form. The special case $f = 0$ and w and its derivative is given on the edge of the plate was considered by F. John [10]. For general constant tension σ_{ij} he obtains the interior estimate

$$w(y) - u(y) = O\left(\frac{h^2}{r^2} W\right) \quad \left(W = \sup_{x \in \Omega} |w(x)|\right)$$

where $u(y)$ is a solution of (II) determined by the boundary values of w and its derivatives up to order 3 on the edge of the plate. Here r denotes the distance from y to the edge. Thus u is also a function of h. In this paper we show that if the displacement and its normal derivatives on the edge of the plate are bounded uniformly with respect to h then the membrane solution with the same boundary values as w approximates the displacement throughout the plate in the L^2 sense. Herein, the rate

$$\int \int_{\Omega} |w(x) - u(x)|^2 \, dx \leq Ch^2 \int \int_{\Omega} |f(x)|^2 \, dx$$

is given, where C is a constant independent of h and f, and Ω is the face of the plate.

Similar estimates were derived by J. L. Lions [12] where the $H^1(\Omega)$ norm of $w - u$ is shown to be $O(h^{1/2} \|f\|_{L^2(\Omega)})$. A. Friedman [6] derived (0.2) in the interior of Ω; W. Greenlee [7] obtained results similar to [12], C. Bardos and D. and H. Brezis [2] prove the strong convergence in $L^2(\Omega)$ of w to u; they do not obtain, however, estimates similar to (0.2). M. I. Vishik and L. A. Liusternik [14] expand w asymptotically in h under some differentiability assumptions on f, but they do not estimate the rate of convergence of w to u.

The author wishes to express his gratitude to the referee for his valuable comments.

1. Preliminary results and estimates in a half plane. Let Ω be a bounded domain in \mathbb{R}^2 with boundary $\partial \Omega$ in the class C^∞. We denote by n the outward normal to $\partial \Omega$. We may assume that $\sigma_{11} = 1$ and use $\varepsilon = Eh^2/12(1 - \sigma^2)$. Set

$$L = \varepsilon \Delta^2 - \sum_{i,j=1}^2 \sigma_{ij} \frac{\partial^2}{\partial x_i \partial x_j},$$

$$M = -\sum_{i,j=1}^2 \sigma_{ij} \frac{\partial^2}{\partial x_i \partial x_j}.$$
Sobolev space [5] of all square integrable functions in Ω that have square integrable partial derivatives up to order k in Ω, and for $v \in H^k(\Omega)$ the norm is given by

$$\|v\|_{H^k(\Omega)}^2 = \sum_{|\alpha| < k} \int \int_\Omega |D^\alpha v|^2 \, dx.$$

Lemma 1.1. There exists a positive constant C such that

$$\varepsilon^2 \|w\|_{H^2(\Omega)}^2 + \|w\|_{H^2(\Omega)}^2 \leq C \|f\|_{L^2(\Omega)}, \tag{1.4}$$

$$\varepsilon^2 \|\phi w\|_{H^2(\Omega)}^2 + \|\phi u\|_{H^2(\Omega)}^2 \leq C \|f\|_{L^2(\Omega)}, \tag{1.5}$$

for all $\varepsilon > 0$.

Proof. Inequality (1.4) is easily obtained using integration by parts (cf. D. Huet [9] or A. Friedman [6]). To obtain (1.5) we multiply equation (1.1) by $\phi^2 Mw$ and integrate by parts. Using (1.4) we obtain

$$\|\phi Mw\|_{L^2(\Omega)} \leq C \|f\|_{L^2(\Omega)}.$$

It follows from [13], [1], or [3] and (1.4) that

$$\|\phi w\|_{H^2(\Omega)} \leq C \|f\|_{L^2(\Omega)}.$$

Now we multiply (1.1) by ϕ and obtain

$$\varepsilon \|\phi \Delta^2 w\|_{L^2(\Omega)} \leq C \left(\|\phi Mw\|_{L^2(\Omega)} + \|f\|_{L^2(\Omega)} \right).$$

Using [13], [1], [3] again we get (1.5).

Corollary. Under the assumptions of Lemma 1.1

$$\varepsilon \|w\|_{H^2(\Omega)} \leq C \|f\|_{L^2(\Omega)} \tag{1.6}$$

and

$$\varepsilon^{1/2} \|\phi w\|_{H^2(\Omega)} \leq C \|f\|_{L^2(\Omega)}. \tag{1.7}$$

Proof. Using (1.4), (1.1) and the uniform ellipticity of Δ^2 we see [5] that

$$\|w\|_{H^2(\Omega)} \leq C \varepsilon^{-1/2} \|f\|_{L^2(\Omega)} \quad \text{and} \quad \|w\|_{H^2(\Omega)} \leq C \varepsilon^{-3/2} \|f\|_{L^2(\Omega)}.$$

Hence using interpolation [12] we get (1.6). Similar arguments lead to (1.7).

Let R^2_+ be the half plane $\{(x_1, x_2) \in R^2 | x_1 \in R^1, x_2 > 0\}$.

Lemma 1.2. Assume $f(x) \in L^2(R^2_+)$ and $f(x_1, x_2) = 0$ for $x_2 > K$. Let w be the solution of (1.1) in R^2_+ satisfying the Dirichlet boundary conditions

$$w(x_1, 0) = \partial w(x_1, 0)/\partial x_2 = 0, \quad w \text{ is bounded in } R^2_+, \tag{1.8}$$

and let $u(x)$ be the solution of (1.2) in R^2_+ satisfying

$$u(x_1, 0) = 0, \quad u \text{ is bounded in } R^2_+. \tag{1.9}$$

Then there exist positive constants ε_0 and C such that

$$\varepsilon \|w\|_{L^2(R^2_+)} \leq C \varepsilon^{1/2} \|f\|_{L^2(R^2_+)} \tag{1.10}$$

for all $0 < \varepsilon < \varepsilon_0$, C is independent of ε and f but depends on K.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
PROOF. Assume \(f \in C_0^\infty(R_+^2) \). Using the Fourier transform in \(x_1 \) we obtain for \(w \) and \(h \) the ordinary differential equations

\[
\begin{aligned}
(w_{11} + 2\sigma_{12}w_1 + \sigma_{22} w_{22}) &= \hat{f}(\xi_1, x_2) \\
(1.11)
\end{aligned}
\]

and

\[
\begin{aligned}
(1.12)
\end{aligned}
\]

The characteristic equation for (1.11) is

\[
(1.13)
\]

Setting \(\rho = \xi_1r \) we obtain

\[
\delta(r^2 - 1)^2 - (\sigma_{22}r^2 + 2\sigma_{12}r - 1) = 0
\]

where \(\delta = \epsilon\xi_1^2 \).

We consider the three cases: (i) \(\delta < \delta_1 \), (ii) \(\delta > \delta_2 \) and (iii) \(\delta_1 < \delta < \delta_2 \), where \(\delta_1 \) is a sufficiently small positive number and \(\delta_2 \) is a sufficiently large number independent of \(\epsilon \) and \(\xi_1 \). In case (i) we set \(r = s^{-1} \) so that (1.13) becomes

\[
\delta(1 - s^2)^2 - (\sigma_{22}s^2 + 2\sigma_{12}is - s^4) = 0.
\]

Since the equation \(\sigma_{22}s^2 + 2\sigma_{12}is - s^4 = 0 \) has the double root \(s = 0 \) and two simple roots \(s_1 \) and \(s_2 \), we have [8] the expansions

\[
s = \pm \delta^{1/2}[1 + o(1)] \quad \text{as } \delta \to 0
\]

and

\[
s = s_j[1 + O(\delta)] \quad \text{as } \delta \to 0, j = 1, 2.
\]

Therefore there exists a positive constant \(\delta_1 \) such that the roots \(\rho_j \) of (1.11) have the representation

\[
\begin{aligned}
\rho_j &= \xi_1(i\sigma_{12} - (\sigma_{22} - \sigma_{12}^2)^{1/2} + \delta\alpha) \equiv \xi_1(ib - D + \alpha\delta) \equiv ib\xi_1 - D\xi_1, \\
\rho_2 &= \xi_1(ib + D + \delta\alpha) \equiv ib\xi_1 + D\xi_1, \\
\rho_3 &= -e^{-1/2}(1 + \delta\beta)\text{sgn}\xi_1 \equiv ib\xi_1 - D\xi_1, \\
\rho_4 &= -e^{-1/2}(1 + \delta\beta)\text{sgn}\xi_1 \equiv ib\xi_1 + D\xi_1,
\end{aligned}
\]

where \(\alpha \) and \(\beta \) are bounded functions of \(\epsilon \) and \(\xi_1 \). In case (ii) we get similarly

\[
\rho_j = \pm e^{-1/2}(1 \pm \delta^{-1/2}\gamma), \quad j = 1, 2, 3, 4,
\]

where \(\gamma \) is a bounded function of \(\epsilon \) and \(\xi_1 \).

Finally in case (iii)

\[
\rho_j = \xi_1r_j, \quad \text{where } j = 1, 2, 3, 4,
\]

The solution \(u \) of (1.2), (1.9) is given by
where

\[
G(\xi_1, x_2, t) = -\left[\exp(ib_1|\xi_1| |x_2 - t| - D_1|\xi_1|x_2) \right] (\sinh D_1|\xi_1|t/D_1|\xi_1|)
\]

if \(x_2 \geq t\), and for \(x_2 < t\), \(G\) is defined by the relation

\[
G(\xi_1, x_2, t) = \overline{G(\xi_1, t, x_2)}.
\]

The solution \(w\) of (1.1), (1.8) is given by

\[
\hat{w}(\xi_1, x_2) = \int_0^\infty G_\varepsilon(\xi_1, x_2, t) \hat{f}(\xi_1, t) \, dt + \int_0^\infty H_\varepsilon(\xi_1, x_2, t) \hat{f}(\xi_1, t) \, dt
\]

where the functions \(G_\varepsilon\) and \(H_\varepsilon\) are defined by

\[
G_\varepsilon(\xi_1, x_2, t) = -\left[\exp(ib_1|\xi_1| |x_2 - t| - D_1|\xi_1|x_2) \right] / |\rho_3 - \rho_1|^2 \varepsilon
\]

\[
\cdot \left[\frac{(\rho_4 - ib_1|\xi_1|)}{(\rho_4 - \rho_1)} \frac{\sinh D_1|\xi_1|t}{D_1|\xi_1|} - \frac{\cosh D_1|\xi_1|t}{\rho_4 - \rho_1} \right]
\]

if \(x_2 \geq t\),

\[
(1.15) \quad H_\varepsilon(\xi_1, x_2, t) = G_\varepsilon^*(\xi_1, x_2, t) + \frac{\exp(-|\xi_1|(D_1 + D_1^*)t)}{|\rho_1 - \rho_3|^2|\rho_1 - \rho_4|^2}
\]

\[
\cdot \left[(\rho_4 - \rho_1)\exp(2|\xi_1|(|b_1^2 - b_1^2|)) - (\rho_4 - \rho_1)\exp(-2|\xi_1|(|b_1^2 - b_1^2|)) \right]
\]

if \(x_2 < t\), and for \(x_2 < t\) they are defined by the relations

\[
G_\varepsilon(\xi_1, x_2, t) = \overline{G_\varepsilon(\xi_1, t, x_2)} \quad \text{and} \quad H_\varepsilon(\xi_1, x_2, t) = \overline{H_\varepsilon(\xi_1, t, x_2)}.
\]

The function \(G_\varepsilon^*\) is given by (1.15) with the roles of \(\rho_1\) and \(\rho_3\) exchanged. We consider case (i) first. A typical summand of \(\hat{w} - \hat{u}\) is

\[
l_1 = \int_0^{x_2} \left[\frac{\exp(ib_1|\xi_1| |x_2 - t| - D_1|\xi_1|x_2)}{(\rho_4 - \rho_1)|\rho_3 - \rho_1|^2 \varepsilon} \cosh D_1|\xi_1|t \right] \hat{f}(\xi_1, t) \, dt
\]

\[
\equiv \int_0^{x_2} W(\xi_1, x_2, t) \hat{f}(\xi_1, t) \, dt
\]

The denominator is equal to \(\varepsilon^{-1/2}[1 + O(\delta)]\) if \(\delta\) is small, \(\delta \ll \delta_1\) say, therefore

\[
|l_1| \leq C\varepsilon^{1/2} \int_0^{x_2} \exp(-D_1|\xi_1|x_2) \left[\cosh(D_1|\xi_1|t) \right] \hat{f}(\xi_1, t) \, dt,
\]

and similarly,

\[
|l_2| = \int_0^{x_2} W(\xi_1, t, x_2) \hat{f}(\xi_1, t) \, dt
\]

\[
\leq C\varepsilon^{1/2} \int_0^{x_2} \exp(-D_1|\xi_1|t) \left[\cosh(D_1|\xi_1|x_2) \right] \hat{f}(\xi_1, t) \, dt.
\]

Thus
since supp \(f(x_1, x_2) \subset \{0 < x_2 < K\} \). To estimate \(\|l_1 + l_2\| \) we rely on the following principle: if \(\int |K(x, y)| \, dx \leq C_1 \) and \(\int |K(x, y)| \, dy \leq C_2 \) then

\[
\int \left(\int |K(x, y) f(y) dy| \right)^2 \, dx \leq C_1 C_2 \int |f(x)|^2 \, dx,
\]

which follows easily from the Riesz-Thorin convexity theorem [4]. Applying Plancherel's formula and the above principle we get

\[
\int C_1 C_2 \int |f(x_1, x_2)|^2 \, dx_1 \, dx_2 \leq C_1 C_2 C \int \int C_1 C_2 \int |f(x_1, x_2)|^2 \, dx_1 \, dx_2 \, dx_3
\]

where

\[
C_1 = \sup_{\xi, \eta} \int_0^K |K(x, t)| \, dt
\]

and \(C_2 \) is defined similarly. Direct computations show that

\[
C_1, C_2 \leq Ce^{1/2} \sup_{\xi} \frac{1 - e^{-K|\xi|}}{|\xi|} = Ce^{1/2}.
\]

The other terms of \(\hat{w} - \hat{u} \) are similarly estimated by \(Ce^{1/2} \). In cases (ii) and (iii) all terms are bounded by \(Ce^{1/2} \) in \(L^2(R^2) \) and \(C \) is independent of \(K \). In cases (iii) we use the fact \(|x_2| > \delta |x_1|^{-1/2} \) and \(|r_j - r_k| > c > 0 \) if \(j \neq k \). This concludes the proof of Lemma 1.2.

2. Estimates near the boundary and main results.

LEMMA 2. Let \(w \) and \(u \) be the solutions of (1.1) and (1.3) in \(\Omega \) satisfying the homogeneous Dirichlet boundary conditions. Then there exists a neighborhood \(U \) of \(\partial \Omega \) in \(\Omega \) such that

\[
\|w - u\|_{L^2(U)} \leq Ce^{1/2} \|f\|_{L^2(\Omega)} + C\|w - u\|_{L^2(\Omega - U)}
\]

where \(C \) and \(U \) are independent of \(\epsilon \) and \(f \).

Proof. For any point \(x_0 \in \partial \Omega \) we can find a neighborhood \(U_0 \) of \(x_0 \) in \(\Omega \) and a smooth mapping of \(U_0 \) into \(B_r = \{x \in R^2 | x_2 \leq r, x_1 \leq -r \} \) so that \(\bar{U}_0 \cap \partial \Omega \) is mapped onto \(B_r \cap \{x_2 = 0\} \) and such that \(x_0 \) is mapped into the origin. Then using an affine transformation of the coordinates we can write \(L \) and \(M \) in \(B_r \) as follows.

\[
\tilde{L} = \epsilon \Delta^2 - \sum_{i,j} a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \epsilon \left[x_1 N(x, D) + x_2 P(x, D) + Q(x, D) \right] + x_1 R(x, D) + x_2 S(x, D) + T(x, D)
\]

(2.2)

\[
\tilde{M} = - \sum_{i,j} a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + x_1 R(x, D) + x_2 S(x, D) + T(x, D)
\]

(2.3)

where the quadratic form corresponding to \(a_{ij} \) is positive definite, \(a_{ij} \) is constant and \(N, P, Q, R, S, T \) are partial differential operators with coefficients in \(C^\infty_0(B_r) \) of orders 4, 4, 3, 2, 2 and 1 respectively. Let \(\psi \) be a
function in $C_0^\infty(B_r)$ such that $\psi = 1$ in $B_{r/2}$. Then the functions ψw and ψu

satisfy equations of the form

\begin{align}
L\psi w &= f_{1,\epsilon}, \\
M\psi u &= f_1
\end{align}

where L and M are defined by (1.1) and (1.1') respectively (a_y is replaced by a_y) and $f_{1,\epsilon}$ and f_1 are defined by (2.2)–(2.5). We have to estimate terms of the form $\epsilon x_1 Nw$, $\epsilon x_2 Pw$, etc. We may assume that $Nw = \sum_{|a|<4} D^a (a^a(x) w)$ so that

\[
\int_0^\infty G_\epsilon (\xi_1, x_2, t) (x_1 Nw) (\xi_1, t) \, dt = -i \int_0^\infty \frac{\partial}{\partial \xi_1} (Nw) (\xi_1, t) \, dt
\]

\[
= i \int_0^\infty \frac{\partial}{\partial \xi_1} G_\epsilon (\xi_1, x_2, t) \sum_{|a|<4} \left(i \xi_1 \frac{\partial}{\partial x_2} \right)^a (a^a w) (\xi_1, t) \, dt.
\]

Since $\epsilon^2 \partial (G_\epsilon + H_\epsilon) / \partial \xi_1$ is a bounded operator and Lemma 1.1 shows that $\epsilon^{1/2} \|f\|_{L^2(\Omega)} \leq C \|f\|_{L^2(\Omega)}$, we see that all summands of $\epsilon x_1 Nw$ containing two or more derivatives with respect to x_1 contribute to $L^{-1} (\epsilon x_1 Nw)$ a quantity that is bounded by $C \epsilon^{1/2} \|f\|_{L^2(\Omega)}$. The functions $G_\epsilon + H_\epsilon$, $\partial (G_\epsilon + H_\epsilon) / \partial t$ and their ξ_1 derivative vanish for $x_2 = 0$, therefore we can integrate by parts expressions containing three or four derivatives of w with respect to t. Since $\partial^3 (G_\epsilon + H_\epsilon) / \partial \xi_1^2 \partial t^2$ is a bounded operator in $L^2(B_r)$ and $\psi w \in C_0^\infty(B_r)$, we see that the contribution of such derivatives to $L^{-1} (\epsilon x_1 Nw)$ is bounded by $C \epsilon^{1/2} \|f\|_{L^2(\Omega)}$. To estimate $\epsilon x_2 Pw$ we use similar arguments and (1.7), and for ϵQw we use integration by parts and (1.6). Writing $\psi w = L^{-1} f_{1,\epsilon}$ and $\psi u = M^{-1} f_1$ we see that we have to estimate expressions of the form

\[
(L^{-1} - M^{-1}) x_1 R(x, D)(w - u) \quad \text{and} \quad M^{-1} x_1 R(x, D)(w - u),
\]

etc. The first expression can be estimated by $C \epsilon^{1/2} \|f\|_{L^2(\Omega)}$ using Lemma 1.2 and (1.5). To estimate the second expression we note that the function ψ can be chosen so that it is independent of x_2 in $0 < x_2 < r^2/4$, and $|\partial \psi / \partial x_1| < C / r$, $|\partial^2 \psi / \partial x_1^2| < C / r^2$. Using integration by parts and the fact that G vanishes on the boundary $x_2 = 0$ we obtain the estimate

\[
\|w - u\|_{L^2(U)} \leq C \epsilon^{1/2} \|f\|_{L^2(\Omega)} + Cr \|w - u\|_{L^2(U_0)}
\]

where C is independent of ϵ and r. The neighborhood U_0 of x_0 is the inverse image of $B_{r/2}$. The boundary $\partial \Omega$ can be covered by a finite number of neighborhoods $\{U_j\}$ so that the number of intersecting neighborhoods $\{U_j\}$ at each point is less than 4 (cf. [15]). Setting $U = \bigcup_0 U_j$ and using a partition of unity we obtain

\[
\|w - u\|_{L^2(U)} \leq C_1 r \|w - u\|_{L^2(U)} + C_2 \|w - u\|_{L^2(\Omega - U)}
\]

where C_1 is independent of r; hence (2.1) follows.

The main result of this paper is

Theorem 2.1. Let Ω be a bounded domain in R^2 with smooth boundary $\partial \Omega$ and let w and u be the solutions of (1.2), (1.2') and (1.3), (1.3') respectively. Then there exists a constant C such that for all $\epsilon > 0$ and $f \in L^2(\Omega)$,
Proof. Using the interior estimates of A. Friedman [6], we have for any subdomain Ω_0 of Ω, such that $\overline{\Omega}_0 \subset \Omega$, the estimate

\begin{equation}
\|w - u\|_{L^2(\Omega_0)} \leq C \varepsilon^{1/2} \|f\|_{L^2(\Omega)},
\end{equation}

where C is a constant independent of ε and f, but C depends on $\text{dist}(\Omega_0, \partial \Omega)$. Combining (2.1) and (2.7), inequality (2.6) follows.

The following results can be proved by the same methods and the results of A. Friedman [6].

Theorem 2.2. Let w and u be the solutions of (1.2) and (1.3) with boundary conditions

\begin{align}
\tag{2.8}
w &= \partial^2 w / \partial n^2 = 0 \quad \text{on } \partial \Omega, \\
\tag{2.9}
w &= \Delta w = 0 \quad \text{on } \partial \Omega, \\
\tag{2.10}
w &= \partial \Delta w / \partial n = 0 \quad \text{on } \partial \Omega
\end{align}

and

\begin{equation}
\tag{2.11}
u = 0 \quad \text{on } \partial \Omega.
\end{equation}

Then (2.6) holds.

Theorem 2.3. Let Q_T be the cylinder $Q_T = \Omega \times (0, T)$, $B_T = \partial \Omega \times (0, T)$. Let w be the solution of $\partial w / \partial t + Lw = f(x, t)$ in Q_T satisfying (1.2'), (2.8), (2.9) or (2.10) and (2.11) on B_T, $w(x, 0) = 0$ in Ω, and let u be the solution of $\partial u / \partial t + Mu = f(x, t)$ in Q_T satisfying (2.11) on B_T and $u(x, 0) = 0$ in Ω. Then

\begin{equation}
\left(\int_0^T \int_{\Omega} |w(x, t) - u(x, t)|^2 \, dx \, dt \right)^{1/2} \leq C \varepsilon^{1/2} \left(\int_0^T \int_{\Omega} |f(x, t)|^2 \, dx \, dt \right)^{1/2}.
\end{equation}

This result improves the results of J. L. Lions [12, p. 287], where

$\|w - u\|_{L^2(Q_T)} = O(\varepsilon^{1/4}),$

and A. Friedman [6] by extending his estimates up to the boundary.

Remark. The estimate (2.6) is sharp and can be verified in the case of a clamped, uniform circular plate. It is probably not sharp in case boundary conditions (2.8), (2.9) or (2.10) replace (1.2'). The method of the present paper can be used to obtain sharper results for the various boundary value problems.

References

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

Current address: Department of Mathematics, Rensselaer Polytechnic Institute, Troy, New York 12181